The mmsearch Metamotif Search Engine
Manual and Reference

Thomas Junier
Swiss Institute of Bioinformatics

April 3, 2001

Abstract

Metamotifs are a tool for describing the arrangement of features along
sequences. This document describes the metamotif search engine, mmsearch,
a Python program which allows to retrieve from a database all sequences
that match a given metamotif.

Contents
1 Overview 2
2 Command-line Syntax 2
3 Implementation 5
3.1 The Steps of a Metamotif Search 5
3.2 The String Representation 6
3.3 Program Structure 7
4 Metamotif Syntax 8
4.1 Featureso e 8
4.2 Simple Arrangements and Separators 8
43 FeatureEnds Lo o 8
4.4 SPACETS .« v o i e e e e e e e e e e e e e e 9
4.5 Anchors L e 9
4.6 Alternatives (logical 'xor’) L. 10
47 Ranges. oo e 10
4.71 Negatives Lo 10
4.8 Simultaneous Match ("Equivalence") 11
4.8.1 Variant 1: at least 1 branch must match (logical ’or’) . . 11
4.8.2 Variant 2: all branches must match (logical ’and’) 11
483 Caveat! 11
4.9 Identifiers 12

5 Grammar 12

A Examples of Metamotifs 13
B File Formats 14
B.1 GFF 14
B2 PFF. . . . o 14

1 Overview

The arrangement of features along a sequence, such as domains along a pro-
tein or a DNA stretch, is often more characteristic than the presence of any
single feature. For example, protein kinase domains occur in a large number
of proteins; so do sterile alpha domains; but only ephrin receptors have a pro-
tein kinase domain followed by a sterile alpha. In the DNA world, promoters
exhibit similar properties.! Searching for arrangements may hence enhance the
selectivity of searches without lowering their sensitivity, or vice-versa.

The mmsearch program works with arrangement descriptions called metamo-
tifs (because they are, in a sense, motifs of motifs). Metamotifs look somewhat
like character-oriented regular expressions (often called "patterns” in sequence
analysis, see for example the PROSITE patterns?), but instead of describing ar-
rangements of characters in a text, they describe arrangements of features in
a sequence. The syntax of metamotifs (see section 4) is deliberately similar to
that of usual regexps (e.g., those of Perl), but due to specialization to a bi-
ological problem, there are significant differences. The mmsearch engine also
works differently from a pure regular expression engine, because it performs
some tasks (like comparing numbers extracted from its input string) that are
beyond pattern matching.

mmsearch does not in itself look for the occurrence of motifs in the sequences
(a.k.a. match data): this task is left to specialized predictors like profiles, HMMs,
patterns, and the like. The match data is supplied to mmsearch on standard
input, in a tab-separated format (several formats are possible). This may seem
a drawback, but in fact it allows mmsearch to freely mix match data of any
origin, including, for example, database annotations.

2 Command-line Syntax

The call syntax of mmsearch is:

$ mmsearch [-hO0Xv][-i <input_format>][-o <output_format>]
[-n <name>] <metamotif>

In promoters, the motifs would be transcription factor binding sites, CpG islands, TATA-
boxes and the like; but at other levels it could include exons, genes, terminators, cistrons,
etc.

?http://www.expasy.ch/tools/scnpsit3.html

The match data are read on stdin. The options are:

-h Prints out a help message.
-0 Allow matches to overlap. By default, only reports disjoint matches.

-X Take into account all features in the input, including those that are not part
of the metamotif. Consider a protein which has domains A, B, and A, in
that order. Now suppose you’re interested in all proteins who have two
A domains. The corresponding metamotif (see section 4) is A = A’; and
domain B isn’t part of this expression. If match data about B is present in
the string representation (see section 3.2), ’A = A’ will not match (whereas
’A = B = A’ would). This behaviour is generally not desired, so it is off
by default. Use -X to turn it back on.

-v Verbose. Prints out information as to what operation the program is cur-
rently performing.

-i <input_format> Argument is a string that specifies the ordinal number of
each field in a line of input. Default is "s1b2e3f4", which means sequence
(s) is field 1, begin of match (b) field 2, end of match (e) field 3, and
feature (f) field 4. The letters can appear in any order, but must all be
present. Fields begin at 1, like in cut(1). Some frequently used formats
have aliases, these are PFF (the default) and GFF (see B.1), so you could
say -i gff if you don’t remember the fields of GFF.

-o <output_format> Specifies the output format. The <output_format> is a
white-separated string of format options (see below). The options have
a l-letter and a 3-letter form, and any combination of options can be
specified:®

nat | n ("native") the string representation of the sequence (see 3.2).
This is reported once per matching sequence, irrespective of the num-
ber of times the meta-motif matches in the sequence. Example (this
is a single line):

sw:VAV_HUMAN 617-<prf:SH3#1-617 660-prf:SH3>#1-660
671-<prf:SH2#2-671 765-prf:SH2>#2-765 782-<prf:SH3#3-782
842-prf :SH3>#3-842

pff | p each match is presented on a different line, as PFF(see B.2), but
the individual component motifs of the match are not shown. Exam-
ple:

sw:VAV_HUMAN 601 660 METAMOTIF - - -
sw:VAV_HUMAN 782 842 METAMOTIF - - -

3In the examples below, metamotif [!pfam:SH3|prf:SH3] was searched in the human Vav
oncogene, VAV_HUMAN. The names ’pfam:SH3’ and ’prf:SH3’ represents a match of a Src Ho-
mology 3 domain motif according to Pfam and PrositE, respectively.

det

spc

sep

This option allows the output of a metamotif search to be fed back to
mmsearch for another metamotif search. This allows the construction
of rather complex queries in a single pipeline (or of even more complex
ones using scripts). See A for examples of this.

| d ("detailed") each component motif of each match is shown on a
separate line, in the original format.

sw:VAV_HUMAN 601 658 pfam:SH3 1 57 10.423
sw:VAV_HUMAN 617 660 prf:SH3 20 -1 11.796
sw:VAV_HUMAN 782 842 prf:SH3 1 -1 17.560
sw:VAV_HUMAN 785 840 pfam:SH3 1 57 18.215

Obviously this option is most useful when in conjunction with option
pff.

| s ("spacers") the spacers between the component motifs of each
match are shown as PFF, each one on a line of its own.

sw:VAV_HUMAN 602 616 SPACER 1 -1 -
sw:VAV_HUMAN 618 657 SPACER 1 -1 -
sw:VAV_HUMAN 659 659 SPACER 1 -1 -

This information can be handy when there is suspicion that there
is an uncharacterized but conserved region that frequently occurs
between, say, two motifs A and B. The spacer sequences could be
extracted, aligned, and made into a profile. Again, this isn’t very
useful without the det option.

| h ("hash marks") lines in native format (option 'nat’ or ’n’) are
preceded by "## ", and different matches in the same protein are sep-
arated by a line containing only ’#’. This makes it easier for parsers
to group PFF lines my match, and matches by sequence; while still
allowing the output to be piped to, say, GNUplot (’#’ is a comment,
and such lines are ignored).

The default string is ’nat pff det sep?’, which results in the following
output:

sw:VAV_HUMAN 601-<pfam:SH3#3-601 617-<prf:SH3#1-617
658-pfam:SH3>#3-658

660-prf:SH3>#1-660 782-<prf:SH3#2-782 785-<pfam:SH3#4-785
840-pfam:SH3>#4-840

842-prf :SH3>#2-842

sw:VAV_HUMAN 601 660 METAMOTIF - - -

sw:VAV_HUMAN 601 658 pfam:SH3 1 57 10.423

sw:VAV_HUMAN 617 660 prf:SH3 20 -1 11.796

#

sw:VAV_HUMAN 782 842 METAMOTIF - - -

sw:VAV_HUMAN 782 842 prf:SH3 1 -1 17.560

sw:VAV_HUMAN 785 840 pfam:SH3 1 57 18.215
#

-n <name> With option pff, use <name> as feature name (default is '’METAMOTIF’).

3 Implementation

3.1 The Steps of a Metamotif Search
Here’s the pseudocode for a metamotif search:

get match data about relevant sequences and features -> list
scan metamotif regexp -> tokens
parse tokens -> automaton

convert sequence to string representation

1

2

3

4: for each sequence in list:

5

6 search for regexp over string using automaton

Here’s what each of these steps does in more detail:

1. Get match data The match data are usually looked up in a database
(such as Hits*[4]) or generated by running the appropriate program(s) (like
pfsearch [2] or hmmer®). In any case, one ends up with a list of match
data, i.e. which motif(s) are present in which sequence(s), and at which
position(s). This should be formatted in a line-oriented, tab-separated
format with information about one match per line, e.g.

sw:VAV_HUMAN 402 504 prf:PH_DOMAIN 1 -1 10.759

In this particular format (PFF — see B.2 for details), the first four fields are
sequence ID, start of match, end of match, and motif ID. These are the
fields needed by mmsearch, the others aren’t used. Other popular formats,
like GFF (see B.1), are also supported. Whatever the origin and format of
the data, they are supplied to mmsearch on standard input.

2. Scan metamotif The user-supplied metamotif is scanned and separated
1207 7) 7<7.

into elementary tokens (smallest meaningful units) like ’(’, ’,’, or

3. Parse tokens The tokens are parsed into a meaningful structure com-
posed of substructures, according to the grammar (see 5. For each sub-
structure, a partial automaton is built, and when all the tokens have been
successfully parsed, the full automaton is generated.

4. Loop over all sequences For each sequence in the list obtained in step
1, do the two following steps:

4http://hits.isb-sib.ch
Shttp://hmmer.wustl.edu

5. Represent the sequence as a string The match data is converted into
a string which contains the name and position of all motifs, in order of
position, (see section 3.2 for the syntax).

6. Run automaton Pass this string as input to the automaton built in
step 3. When the automaton ends in an acceptor state, report a match.
By default, the search resumes from the end of the present match and
all matches are reported. This behaviour may be changed by the user:
option -0 (see 2) allows matches to overlap, i.e. the search resumes at
the next position after the start of the match ; the start-anchor '~’ causes
only matches that occur at the N-terminus of the sequence to be reported;
and the end-anchor ’$’ has the same effect but at the C-terminus of the
sequence.

3.2 The String Representation

Metamotif searching is (partially) a pattern matching problem, so the match
data pertaining to a sequence must first be converted into some form of string.
Here’s an example of such a string:

181-<SH2#1-181 256-SH2>#1-256 (1)

This means that there is an SH2 domain that spans residues 181 to 256. All
such strings are made of concatenations of feature end data, which are separated
by spaces. Expression 1 contains two feature end data, namely

181-<SH2#1-181 (2)

and
256-SH2>#1-256 (3)

Expression 2 is composed of three parts, separated by dashes (’-’):

181 (4)
<SH2#1 (5)

and
181 (6)

Expressions 4 and 6, which are identical, are the position of the feature end.
It is repeated because there may be a spacer (see 4.4) both before and after a
feature end (exception: no spacer at the beginning or end of the metamotif, see
5), and because each character of the input string is only read once. Expression
5 identifies the feature end. It is composed of two parts:

<SH2 (7)

and
#1 (8)

Part 7 is the kind of feature end (in this case, the start of an SH2 domain), and
8 the feature’s number, which is unique and is used for identification purposes.

The feature end data appear in order of position. This may lead to ambi-
guities when two or more features start (resp. end) at the same position. In
this case, the longer feature appears first (resp. last) in the string. All in all,
expression 1 states that the sequence contains the start (’<’) of domain SH2 #
1 at position 181, and the end (’>’) of domain SH2 # 1 (i.e., the same SH2
domain) at position 256.

Note: To speed things up, the whole names of motifs are not used; instead,
they are converted to one-letter symbols, e.g. SH2 < a, etc.

This representation is also used in mmsearch’s native output (option nat,
see 2).

3.3 Program Structure

The engine consists of the following Python files:

mmState.py Class hierarchy of automaton states: class State and its sub-
classes. All states are linked to one or more next states, and inherit
(and possibly override) a method for deciding to which of them (if any) a
transition is possible. They also have a ’status’ attribute which is either
’accept’ or ‘reject’ and specifies whether a match has been found when
no further transition is possible. Some of these states behave like classic
finite-state automaton (FSA) states (for more about FSAs see [1], sec-
tion 3.6), others perform differently. The Spacer state, for example, reads
from the input until it finds two series of digits, which it then converts
to integers; it then allows or rejects transition based on the difference be-
tween these two numbers (which represent the end position of a motif and
the start position of the next one).

mmAutomaton.py This file provides automata, which are built from State ob-
jects (and subclasses). The main method of an Automaton is run(), which
launches the match process (¢f. 3.1, pt. 6). The abstract class Automaton
provides this functionality. Then there are minimal automata for State
and its subclasses. This is because a single state does not constitute an
automaton: there must be at least a start state and an end state. Finally,
there are constructors that take a list of automata and link them together
(retaining order) into a larger automaton. This process of linking together
smaller automata into a larger one is done by the parser, mmParse.

mmScan.py Metamotif lexer. This splits the metamotif (as supplied by the user)
into tokens, which are its smallest meaningful units. This corresponds to
point 2 in section 3.1.

mmParse.py Metamotif parser: a recursive-descent parser that builds the au-
tomaton from the elementary sub-automata defined in mmAutomaton, ac-

cording to the tokens supplied by mmScan (¢f. 3.1, pt. 3). For the grammar
it implements, see section 5. For more about parsing, see [3]6.

mmsearch Executable script. This takes care of handling the command-line
options, sorting the input data by sequence, building the motif-name
letter conversion tables, converting the match data into string represen-
tation (see 3.2), etc. This program performs points 1, 4 and 5 of section
3.1, and drives mmScan.py, mmParse.py, and mmAutomaton.py to perform
steps 2, 3 and 6, respectively.

4 Metamotif Syntax

This section describes all the elements of the metamotif syntax.

4.1 Features

A feature is denoted simply by its name, which may include alphanumeric char-

9,9

acters (case is significant) as well as ’:” and ’_’.

SH2
PKINASE

e.t.c.

4.2 Simple Arrangements and Separators

When two features (or feature ends) directly follow one another, separate them
with a separator, ’u=_’ (space, ’equal’, space). The spaces are in fact optional,
but I feel they enhance readability.

SH2 = SH3 — SH2 followed by SH3

See also note 1 in section 5.

4.3 Feature Ends

It is sometimes necessary to specify feature ends rather than whole features,
for example when dealing with overlaps or inclusions. The start of a feature is
indicated by a ’<’ preceding the feature, its end by a ’>’ following the feature:

<SH2 — start of SH2,
SH2> — end of SH2,

In fact, mmsearch only deals with feature ends. A "whole" feature, i.e.
one representing the total extent of the feature, is silently converted to two
corresponding ends, e.g. if you say

6This book is currently out of print, but the whole text is available from http://www.cs.
vu.nl/~dick/PTAPG.html

SH2
the program will convert it to

<SH2 = SH2>

4.4 Spacers

When the number of residues that separate feature ends (or features) is impor-
tant, specify the range of acceptable values with a spacer: 'm,n’.

53EX0_N_DOMAIN = 4,11 = 53EX0_I_DOMAIN

This means "from 4 to 11 residues between the Exo-N and the Exo-I domains",
and is typical of eubacterial DNA polymerases. Spacers are separated from
feature ends by a separator (4.2). They can be open-ended, e.g. ’,20’ means
“at most 20 residues” while ’600,’ specifies at least 600. Spacers must always
be preceded and followed by a feature or feature end.

4.5 Anchors

It can be requested that a metamotif occur at the beginning or end of the
string. This is done with the usual regexp characters, >~ (start) and ’$’ (end).
Anchoring at the start of the string can speed up the search appreciably, because
if the pattern does not match immediately, mmsearch does not try to match at
other positions in the sequence. See also note 2 in section 5.

Anchors may sometimes ’correct’ unexpected (but nevertheless correct) be-
haviour. For example, say you wish to find this arrangement:

FNIII = FNIII = PKINASE

Running this will yield all manner of proteins with at least two fibronectin
type-III domains followed by a protein kinase:

1
(PN HFNC{ENC {FN T PRINASE

2

=,

3

—(FNHFN (PN ———{ PKINASE |

In this case, what the user wanted was probably only sequence #2. What
has gone wrong? Nothing, in fact. It’s just that in cases #1 and #3, the match
does not start at the beginning of the sequence (the match is indicated by a
dashed line). To specify that the match must begin at the start of the sequence,
say

“FNIIT = FNIII = PKINASE

The ’$’ anchor works much in the same way, but restricts the match to the end
of the sequence. Thus, if you wished to look for sequences that contain exactly
the above pattern, nothing before, nothing after, you would say:

“FNIII = FNIII = PKINASE$

4.6 Alternatives (logical ’xor”)

When there are several mutually exclusive possibilities (or branches’), separate
them by an alternative: (b1 |...|bn)’. A branch can consist of an arbitrarily
long list of features, spacers are allowed except at the beginning or end of a
branch. Alternatives can be nested, i.e. a branch can contain an alternative.
(In terms of grammar, a branch must be a FEATURE_LIST (see section 5)).
Examples:

(SH2|SH3) — either SH2 or SH3

There may be any number of branches, but only one of the branches may
match (if you need to express the possibility of multiple branches simultane-
ously matching (i.e., overlapping), use an Equivalence (4.8).

4.7 Ranges

It is possible to look for a variable number of occurrences of some arrangement
of motifs (again, a FEATURE_LIST in grammatical terms), which we call a range.
Delimit the list with parentheses and specify the maximum and minimum values
between braces ('{}’) just after the closing parenthesis: ’(...){m,n}’. Here’s
a possible characterization of the nerve growth factor receptor family:

(TNFR_NGFR_2){1,4} = DEATH_DOMAIN

What this stands for is "one to four (inclusive) tumor necrosis or nerve growth
factor receptor domain(s) (TNFR_NGFR), then a death domain". Ranges can be
open-ended, e.g., (XY){2,} means at least two XYs, and (XY){,3} means at
most 3 XYs.

4.7.1 Negatives

Ranges of the form {,0} can be used to indicate a motif that must not occur
at this position. Here is an expression for a class of receptor protein kinases:

FURIN_LIKE = PKINASE

10

Such proteins fall in two categories: Insulin receptors and related; and ERB-
like oncogenes. A discriminating feature is the presence, in the former group,
of at least one fibronectin type-IIT domain (FN3) between the Furin-like and the
Protein-kinase domains. To select the oncogenes, i.e. those who don’t have any
FN3 domain at this position, use this expression:

FURIN_LIKE = (FN3){,0} = PKINASE

4.8 Simultaneous Match ("Equivalence")
4.8.1 Variant 1: at least 1 branch must match (logical ’or’)

Two different predictors of the same motif (say, Pfam and PROSITE’s version of
SH2) do not always completely agree : there may be small to medium discrep-
ancies in the start and stop positions, for example. When several motifs can
occur at the same position, or at least with some overlap, specify them with an
equivalence class, [b1]...|bn]:

[PROSITE_SH2|PFAM_SH2]

This reads "SH2 from PROSITE, or Pfam, or both — in which case they must
overlap". The branches of a equivalence class must be FEATURE_LISTSs (see the
grammar, section 5). There may be any number of branches.

4.8.2 Variant 2: all branches must match (logical ’and’)

This variant lets the user specify that all branches must match. The matched
substring is a contiguous region which has at least one match of each branch.
For example, to see where a gene on the minus strand overlaps a gene on the
plus strand, you may say:

['PLUS_STRAND_GENE |MINUS_STRAND_GENE]

The * 1’ ensures that only regions with matches of both features will be reported.
With an ordinary equivalence class, you’d get a report of all genes, because a
match of single branch is enough for a match of the equivalence class.

4.8.3 Caveat!

Representing a sequence’s features as a string has a potential problem, namely
when two features start (or end) at the same position. This would be the case,
for example, when two predictors of the same feature are in agreement (this is
far from being always the case, but it happens). Suppose a sequence has an
SH3 domain, identified both by a PROSITE profile and a Pfam HMM, starting
on residue 53. The string representation could be

...53-<PROSITE_SH3#1-53 53-<PFAM_SH3#2...

or

11

...b3-<PFAM_SH3#1-53 53-<PROSITE_SH3#2...
In this case, a simple metamotif like
~PROSITE_SH3

will match only in the first case. The workaround is to use inclusive ’or’s, like
this:

~[PROSITE_SH3|PFAM_SH3]

4.9 Identifiers

Sometimes it is necessary to identify feature ends, i.e. to know which start
corresponds to which stop. Consider the disulfide bridges in this diagram.

2

S s S

Both correspond to the arrangement,

<SS = <8S = SS> = 88> = SS

Where SS is a disulfide bridge. Now case A corresponds to the EGF domain
(and a few others). However, the above expression cannot distinguish case A
from case B and is thus not suitable for finding EGF domains. It must be
modified to

<SS#1 = <SS#2 = SS>#1 = SS>#2 = SS

Where the '#1’s and "#2’s identify individual disulfide bridges.

5 Grammar

Here’s the metamotif grammar:

METAMOTIF = (SEQUENCE|FORK)+

SEQUENCE = (FEATURE_LIST|GROUP)+

FORK = L_BRACKET BANG? FEATURE_LIST { PIPE FEATURE_LIST }* R_BRACKET
GROUP = L_PAREN SEQUENCE { PIPE SEQUENCE }* R_PAREN { RANGE }

12

FEATURE_LIST ::= FEATURE_BLOCK { SPACER FEATURE_BLOCK }*
FEATURE_BLOCK ::= FEATURE_END+

SPACER ::= INTEGER COMMA INTEGER

| ::= COMMA INTEGER

| ::= INTEGER COMMA

FEATURE_END ::= FEATURE_START | FEATURE_STOP

FEATURE_START ::= L_A_BRACKET LETTER { HASH (LETTER | DIGIT) }7
FEATURE_STOP ::= LETTER R_A_BRACKET { HASH (LETTER | DIGIT) }7
INTEGER ::= DIGIT+

LETTER 1= [PA2 272237 777]

DIGIT 1= [’0°-297]

L_PAREN =200

R_PAREN = 2)0

L_BRACE =02

R_BRACE =)

L_BRACKET =22

R_BRACKET =]

L_A_BRACKET =0

R_A_BRACKET ti= 0>

COMMA =00

PIPE = 0|0

HASH =0

BANG =20

Note 1: The grammar has no notion of separators. In fact, separators are
ignored after converting the feature names to a 1-letter representation (their role
is precisely to allow this conversion), and they are not part of the automaton.

Note 2: The grammar has no notion of anchors (’~” and ’$’). These char-
acters do not cause different automata to be constructed (this used to be the
case in older versions); they simply cause the automaton to behave differently
(e.g., by aborting early in the case of ’*’).

Note 3: The grammar has no notion of "whole" features, because any such
names are converted to the equivalent two-ends form (see 4.3).

A Examples of Metamotifs

It is assumed that match data are available, either in a database or by running
a search program on-the fly, and that they are passed to mmsearch on standard
input.

Eubacterial DNA polymerases:

mmsearch ’53EX0_N_DOMAIN = 5,10 = 53EX0_I_DOMAIN = 600, = C_TERM’
Inclusion: sequences that have XPG_1 embedded in 53EXO_N:

mmsearch ’<53EX0_N_DOMAIN = XPG_1 = 53EX0_N_DOMAIN>’

superposition: PROTEIN_KINASE_DOMAIN or PKINASE or both:

mmsearch ’ [PKINASE|PROTEIN_KINASE_DOMAIN]’

13

alternative:
mmsearch ’(IG|FN3) = PKINASE’
repetition:
mmsearch ’(IG|FN3){2,4}’
long repetition:
mmsearch ’ (EGF){30,}’
Tyr PK embedded into PK (Pfam or Prosite) - some are found outside PK
domains!
mmsearch ’ [<PROTEIN_KINASE_DOM|<PKINASE] =
PROTEIN_KINASE_TYR = [PROTEIN_KINASE_DOM>|PKINASE>]’
Gene with at least 10 exons:
mmsearch ’<gene = (exon){10,} = gene>’
Gene less than 10 kb long:
mmsearch ’<gene#l = ,10000 = gene>#1’
Gene with at least 10 exons and less than 10 kb long:
mmsearch -o pff -n 10_ex_gene ’<gene = (exon){10,} = gene>’ | mmsearch
’<10_ex_gene#1 = ,10000 = 10_ex_gene>#1’
See also the Hits examples’ page.

B File Formats

B.1 GFF

GFF (General Feature Format) was originally proposed by Richard Durbin and
David Haussler. This is a format for describing features in DNA sequences. A
full description is available from http://www. sanger.ac.uk/Software/formats/
GFF/GFF_Spec.shtml There is one record per line, each record pertains to one
feature in one sequence. The fields are:

<seqname> <source> <feature> <start> <end> <score> <strand> <frame>
[attributes]

An here’s an example, taken from the above URL:

SEQ1 EMBL exon 103 172 . + 0

B.2 PFF

PFF (Protein Feature Format) is a derivative of GFF, specialized for protein
features. It is also able to represent partial matches of a profile or HMM. Like
GFF, PFF has one record per line, each record pertaining to one feature in one
sequence. The fields are:

<sequence><seq_begin><seq_end><feature><ft_begin><ft_end><score>

"http://hits.isb-sib.ch/doc/wwwmmsearch.shtml

14

The <seq_begin> and <seq_end> fields are the positions of the match in the
sequence. The <ft_begin> and <ft_end> are the positions of the match along
the model (from the beginning and end, respectively). For full matches, these
are 1 and -1, but when matches are partial, these may differ. If the first five
positions of the model are missing in the match, say, then <ft_begin> will be
6. If the last five are missing, then <ft_end> will be -6.

References

[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers, principles,
techniques, and tools. Addison Wesley, 1986.

[2] Philipp Bucher, Kevin Karplus, Nicolas Moeri, and Kay hofmann. A flex-
ible motif search technique based on generalised profiles. Computers and
Chemistry, 20:3-23, 1996.

[3] Dick Grune and Ceriel J. H. Jacobs. Parsing Techniques — A Practical
Guide. Ellis Horwood, 1990.

[4] Marco Pagni, Christian Iseli, Thomas Junier, Laurent Falquet, Victor Jon-
geneel, and Philipp Bucher. trEST, trGEN and Hits: access to dabases of
predicted protein sequences. Nucleic Acids Research, 29:148-151, 2001.

15

