mmsearch Implementation Notes

Thomas Junier
Swiss Institute of Bioinformatics

March 15, 2001

Abstract

This is a short expos of the motivations and strategy behind mmsearch.
Others may argue that anything that doesn’t fit well in the manual goes
here.

First Attempts in Perl

The first attempt at a metamotif search engine tried to convert metamotifs
into Perl regular expressions, and then to evaluate them. This posed a number
of problems, due to the fact that regular expressions are a purely syntactic
construct: you can check that, say, there are two series of digits separated by
a space, but you can’t check that their difference lies within a specified range.
True, Perl’s regexps allow you to save parts of the matches (using parentheses),
but you have to refer to the matches by number, and build (and then evaluate)
a new, additional expression for each condition. For example, to translate a
metamotif such as

PKINASE = 10,20 = FN3

into a Perl regexp-plus-condition, you’d do something along the lines of
#!/usr/bin/perl

my ($min, $max) = (10, 20);
$_ = "128-PKINASE-201 210-FN3-254"; # string representation
my $condition = "\$range_ok = (\$2 - \$1 <= $max) and (\$2 - \$1) >= $min";
my ($pos_1, $pos_2) = /PKINASE-(\d+) (\d+)-FN3/;
if ($&) { # if the regexp matches, see if the range is ok
eval ($condition);
print "Match!\n" if $range_ok; # set during eval()

The trick is to build an appropriate $condition expression which references
submatches in the regexp (indicated by the parentheses) by number: $1 and $2.

Although this is clumsy, it’s feasible. The same trick can be used for checking
ranges. But consider this:

(PKINASE = [10,20| = FN3){1,3} = IG = 30,40 = EGF

now, depending on the number of 'PKINASE = FN3’ repeats, the submatch
referred to by $2 may refer to a spacer between a protein kinase and a fibronectin
type-3 domain (boxed), or beween an immunoglobulin and an EGF domain
(underlined). There is no way of knowing this beforehand, and hence a suitable
$condition cannot be constructed.

The Current Strategy

The solution was to write a new search engine from scratch. The automata
built by mmsearch are a little more than FSAs, however, in that some of the
states’ transitions depend on values parsed from their input. A Spacer state,
for example, requires two parameters (the minimum and maximum number of
residues allowed) and reads characters from the input string until it has read
two sequences of digits separated by a space (see ”String Representation” in the
manual for the format of the input string). It then converts these sequences to
integers, and subtracts the first from the second. The result, which is the number
of residues between the adjacent features, is then compared to the minumum
and maximum. If the test succeeds, the transition to the next state is allowed,
otherwise transition fails.

Such automata could be written in any of several languages, but I chose
Python because %) I wanted to evaluate it and learn it, #) I needed to quickly
find out whether the approach was promising, therefore a scripting language
was ideal, and 44) although I am aware of the existence of parser generating
tools like yacc, I wanted to try my hands at writing one from scratch, since I
wanted to understand a bit how they work. Had I chosen C, I would probably
still be debugging the lexer.

On the other hand, now that it works, I could rewrite it in C with relative
ease, or better yet, rewrite only those parts that slow the program down - most
probably the FSA and not the parser. Python makes this surprisingly easy.

Future Developments

Still, thee FSA-cum-ad-hoc-enhancements model is not entirely satisfactory.
First, it’s not very elegant, being a kludgy distortion of FSAs. It works alright,
but there are useful operations that can’t be done with this model, or at the
expense of distorting it yet further. For example, representing a sequence’s do-
mains as a simple string becomes unwieldy when two domains start at the same
position (see the caveat under ”Equivalence classes” in the manual). The cur-
rent work-around is to use equivalence, but this results in unncessarily complex
metamotifs. The engine could of course be modified, but this would inevitably

lead to a point where the FSA part of the code becomes submerged in a jungle
of grafts which try to glue other functionality to an FSA. At this point, one
should really ask whether we really need the state automaton model, rather than
a more general one. This is what I'm trying to do with a new implementation
of mmsearch, which is based on a (kind of a) stack computer and stores match
data as an ordered table rather than a string; and is an opportunity to learn
Ruby. ;-)

