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e present a probabilistic interpretation of local

i
sequence alignment methods where the alignment scor-
ng system (ASS) plays the role of a stochastic process

p
defining a probability distribution over all sequence
airs. An explicit algorithm is given to compute the pro-

d
bability of two sequences given an ASS. Based on this
efinition, a modified version of the Smith-Waterman

,
w
local similarity search algorithm has been devised

hich assesses sequence relationships by log likelihood
-

b
ratios. When tested on classical examples such as glo
ins or G-protein-coupled receptors, the new method

e
t
proved to be up to an order of magnitude more sensitiv
han the native Smith-Waterman algorithm.

T

Introduction

he comparison of a new protein sequence against a
-

t
database of known proteins is perhaps the most impor
ant computer application in molecular sequence

-
W
analysis. It is generally accepted that the Smith

aterman local similarity search algorithm (Smith &
-

c
Waterman 1981) is the most sensitive technique to dis
over significant weak similarities between two

-
r
sequences. The more frequently used heuristic algo
ithms implemented in the programs FASTA (Pearson

-
s
1990) and BLAST (Altschul et al. 1990) can be con
idered approximations or special cases of a full

e
Smith-Waterman algorithm offering high speed in
xchange for reduced sensitivity.

-
m

The Smith-Waterman algorithm maximizes an align
ent scoring function over all possible local alignments

s
o
between two sequences. The scoring function depend
n a set of parameters referred to as an alignment scor-

m
ing system, which consists of a residue substitution

atrix and a linear gap penalty function. Optimal

r
alignment scores computed by a Smith-Waterman or
elated sequence alignment algorithm have traditionally

y
o
been viewed and interpreted as measures of similarit
r distance (Smith, Waterman, & Fitch 1981). Con-

cerning their mathematical properties, they were shown

to define a metric over the sequence space (e.g. Sellers
1974).

Here, we advocate a different view of local sequence
s

t
alignment methods, in which the scoring system play
he role of a stochastic process generating pairs of

p
related sequences. Based on such an interpretation, we
ropose a modified version of a Smith-Waterman algo-

l
rithm where the score computed for two sequences is a
og likelihood ratio of two probabilities, one given the

e
m
scoring system, and one given a null-model. Th

athematical concepts underlying this approach is
r

g
closely related to maximum likelihood estimation fo
lobal sequence alignments (e.g. Bishop & Thompson

h
t
1986). The performance of the new database searc
echnique is assessed by test protocols previously used

-
t
for the evaluation of alternative alignment scoring sys
ems.

Review of the Native Smith-Waterman

1

Algorithm

2 m 1 2 n o
s
Let a = a a . . . a and b = b b . . . b be tw
equences of residues from an alphabet S containing N

o
s
elements. A local sequence alignment between tw
uch sequences is defined by an alignment path

:
u
represented as an ordered set of index pairs

= (x ,y ), (x ,y ), . . . (x ,y ) . Each index pair
i

1 1 2 2 l l

dentifies a pair of matched residues in the sequence

s
alignment. A valid path u for sequences a and b
atisfies the following conditions: x >x , y >y ,
xl l

k +1 k k +1 k

≤m , y ≤n .
An alignment scoring system (ASS) consists of a

e
s
substitution matrix and a gap weighting function. Th
ubstitution matrix defines substitution scores s (a ,b )

for pairs of residues (a ,b ) ∈ S . The gap weighting2

s
a
function assigns weights w (k ) = α + βk to insertion
nd deletions of length k ≥1. For gap length zero, we

define w (0) = 0.



The scoring system assigns an alignment score S toA

any local sequence alignment (a,b,u):

S (a,b,u) = s (a ,b ) (1)A Σ
k =1

l

x yk k

k
Σ
=1

l −1

k +1 k k +1 k )

N

− w (x −x −1)+w (y −y −1

ote that the alignment score can be described as the

s
sum of two components, a sequence-dependent match
core:

S (a,b,u) = s (a ,b ) (2a)M Σ
k =1

l

x ykk

:and a sequence-independent gap score

S (u) = − w (x −x −1)+w (y −y −1) (2b)
l −1

k +1 k k +1 k
1

G
k =
Σ

These two definitions will be useful in the formulation
n

a
of the probabilistic version of the Smith-Waterma
lgorithm. The native Smith-Waterman algorithm com-

s
putes the optimal local alignment score for two
equences:

SWscore (a,b) = max S (a,b,u), (3)
paths u

A

n
d
which serves as a measure of sequence similarity i
atabase search applications. An efficient procedure to

compute SWscore (a,b) is described in (Gotoh 1982).

Probabilistic Smith-Waterman (PSW)

T

Algorithm

he probabilistic version of the Smith-Waterman algo-
-

i
rithm is based on an analogy between alignment scor
ng systems (ASSs) and hidden Markov models

b
(HMMs), a class of statistical models that have recently
een introduced to molecular sequence analysis (Baldi

t
et al. 1994, Krogh et al. 1994). This analogy comprises
he following ideas and assumptions:

r(i) An HMM defines a probability distribution ove
the sequence space by means of a stochastic pro-

A
cess involving a random walk through the model.

n ASS defines a probability distribution over the
c

p
space of sequence pairs by means of a stochasti
rocess involving a random walk through an

(

alignment path matrix.

ii) The probability of a sequence a being generated
f

s
by an HMM is the sum of the probabilities o
equence a being generated via a particular path

u:

Prob (a) = Prob (a,u)HMM
paths u

HMMΣ
.

T
over all possible paths through the model

he probability of a sequence pair a,b being gen-

o
erated by an ASS is the sum of the probabilities
f sequence pair a,b being generated via a partic-

ular path u:

Prob (a,b) = Prob (a,b,u)ASS
paths u

ASSΣ
.

(

over all valid local alignment paths

iii) In database applications, membership of a
s

e
sequence a to an HMM-defined sequence class i
stimated by an HMMscore which has the form

of a log likelihood ratio:

HMMscore (a) = log
Prob (a)

Prob (a)hhhhhhhhhhhHMM

l

w null

nul

here Prob (a) is the probability of sequence a

I
given a specific null-model.
n a probabilistic Smith-Waterman search, an

o
s
ASS-defined kind of similarity between tw
equences a,b will be estimated by a PSWscore

of the following type:

PSWscore (a,b) = log
Prob (a,b)

Prob (a,b)hhhhhhhhhhhASS

lnul

e
m

What remains to be done in order to implement th
ethod suggested by this analogy, is to chose an

d
t
appropriate null-model for random sequence pairs, an
o work out a reasonable definition for the probability

nof a local sequence alignment Prob (a,b,u) based oASS

the definition of the alignment score.
The null-model we choose has the general form:

)Prob (a,b) = P (m ,n )P (a,b) (4null L 0

w Lhere P (m ,n ) is a length distribution over sequence
-length pair classes, and P (a,b) is the null-model pro0

bability of sequence pair a,b given the length pair pair
class n ,m , which is defined as follows:

P (a,b) = p (a ) p (b ) (5)
n

j
1

m

i
j =1

0
i =
Π Π

-
d
where p (a ) denotes the null-model probability of resi

ue a . The null-model thus essentially consists of a
residue probability distribution over the alphabet S.

The distribution of sequence length pair classes will

p
be the same for the null-model and the ASS-defined
robability distribution. For reasons that will become

s
clear later, we require that there is a logarithmic base z
uch that:



a
Σ p (a )p (b )z = 1. (6)

∈S,b ∈S

s (a ,b )

e
f
Note that log-odds substitution matrices, such as thos
rom the PAM or BLOSUM series (Henikoff &

m
c
Henikoff 1992), have known mutational equilibriu
ompositions and logarithmic bases satisfying the

s
u
above condition. If a different residue composition i
sed as null-model, there will always be a unique solu-

m
tion for z solving the above equation, if the substitution

atrix satisfies the conditions necessary for local
sequence alignments (Altschul 1991).

The ASS-defined probability distribution has the gen-
eral form:

Prob (a,b) = P (m ,n )P (a,b) (7)

w A

ASS L A

here P (a,b) is the ASS-defined probability of

p
sequence pair a,b, given the length pair class n ,m . The
recise nature of the length pair class distribution is

l
a
irrelevant, as long as it is the same for the null-mode
nd the ASS, since the term P (m ,n ) cancels itself in

the definition of the PSWscore :
L

PSWscore =
Prob (a,b)

Prob (a,b)hhhhhhhhhhh (8)
ASS

lnul

L 0

paths u
L A

=
Σ

P (n ,m )P (a,b)

P (n ,m ) P (a,b,u)
hhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhh
)P (a,b,u

)
=

P (a,b0

paths u
A

F

Σ

or sequences of a given length pair class
-a ∈ S , b ∈ S , the probability of a sequence alignm n

ment (a,b,u) will be defined as follows:

)hhhhhhhhhhhhhh (9
)z P (a,b

)
P (a,b,u) =

B (n ,mA

S (a,b,u)
0

w A

A

here S (a,b,u) is the local alignment score of (a,b,u)
-

m
as defined by equation 1, and B (n ,m ) is a length nor

alization term whose functions is to ensure that the
s

m
probabilities of all sequence pairs of length pair clas

,n sum to one. The definition of the alignment pro-

s
bability is natural if one interprets Smith-Waterman
cores as log likelihood ratios, as suggested by Altschul

o
(Altschul 1991). The length normalization term obvi-
usly has to satisfy:

B (n ,m ) = z P (a,b) (10)
a m n

A

∈S ,b∈S ,paths u

S (a,b,u)
0

W

Σ
e will show that the expression for B (m ,n ) simplifies

to

B (n ,m ) = z (11)
p
Σ

aths u

S (u)

w G

G

here S (u) is the gap score of alignment path u as

c
defined by equation 2b, if the null-model satisfies the
onstraint imposed by equation 6. Let us first rewrite

B

the expression for B (m ,n ) as follows:

(m ,n ) = z
R
J
Q

z P (a,b)
H
J
P

(12)
p
Σ Σ

aths u

S (u)

a∈S ,b∈S

S (a,b,u)
0

w M

G

m n

M

here S (a,b,u) is the match score of the sequence
r

s
alignment (a,b,u) as defined by equation 2a. The inne
um in the above expression can be rewritten as shown

,below, using the notation v v . . . v1 2 m −l

w 1 2 n −lw . . . w for the residues of sequences a and b,

p
which are not part of a matched residue pair defined by
ath u:

z P (a,b)
m
Σ

n

M

a∈S ,b∈S

S (a,b,u)
0

a∈S ,b∈S k =1

m −l

v
k =1

n −l

w
k =1

l

x y

s (a ,b )
=sum p (a ) p (b ) p (a )p (b )z

m n k k k k

xk yk

Σ

Π Π Π

Σ Σ
l

=
a ∈S

m −l

b ∈S

n −l

a ∈S,b ∈S

s (a ,b )R
J
Q

p (a )
H
J
P

R
J
Q

p (b )
H
J
P

R
J
Q

p (a )p (b )z
H
J
P

C

= 1 .

ombining equations 8, 9, and 11, we obtain the fol-

P
lowing intuitively plausible expression for the

SWscore :

PSWscore (a,b) =
z

h
z

hhhhhhhhhhhh (13)
Σ

Σ

)

paths u

S (a,b,u

)

paths u

S (uG

A

e
c
Both sums in the log likelihood ratio can efficiently b
omputed by special cases of the forward algorithm

.
1
used for computation of HMM scores (Krogh et al
994, Rabiner 1989). Numerical recipes are given in

Figure 1.

Performance Evaluation of the PSW

I

Algorithm

n order to compare the sensitivities of the PSW algo-

p
rithm and the native Smith-Waterman algorithm, we
erformed parallel database searches on SWISS-PROT

e
q
release 32 (Bairoch & Apweiler 1996) with prototyp
uery sequences from known protein families and

-
c
domains, including the globins, the hsp20 family, cyto
hrome C, the G protein-coupled receptor family, and

e
t
SH2, SH3 as domain examples. The results of thes
ests are shown in Table 1.



A

G

Σ

Σ

)

paths u

S (a,b,u

)

paths u

S (u
hhhhhhhhhhhhhh

z

z

Σ A

PSWscore (a,b) =

)

paths u

S (a,b,u
zAlgorithm to compute:

M ← z ;1,1
s (a ,b )1 1

I 1,1← 0;
.D ← 01,1

for i ←2 to m :

;M ← zi ,1
s (a ,b )

i

i 1

,1
−α −β

i −1,1
−β

i −1,1;
D
I ← z z M + z I

← 0.

f

i ,1

or j ←2 to n :

;M ← z1, j
s (a ,b )

I 1, j

1 j

← 0;
D ← z z M + z D .

f

1, j
−α −β

1, j −1
−β

1, j −1

or i ←2 to m ; j ←2 to n :

;M ← z R
Q 1 + M + I + D H

Pi , j
s (a ,b )

i −1, j −1 i −1, j −1 i −1, j −1

i

i j

, j
−β −α

i −1, j i −1, j
−α

i −1, j ;

D

I ← z R
Q z M + I + z D H

P
← z R

Q z M + D H
P .

p

i , j
−β −α

i , j −1 i , j −1

aths u

S (a,b,u)

1≤i ≤m ,1≤ j ≤n
i , jΣ ΣAz = M

Algorithm to compute: zΣ )

paths u

S (uG

M 1,1← 1;
I ← 0;1,1

1,1D ← 0.

:for i ←2 to m

M ← 1;

i

i ,1

,1
−α −β −β

i −1,1;
D
I ← z z + z I

← 0.

f

i ,1

or j ←2 to n :

M ← 1;1, j

1, jI ← 0;
D ← z z + z D .

f

1, j
−α −β −β

1, j −1

or i ←2 to m , j ←2 to n :

;M ← 1 + M + I + Di , j i −1, j −1 i −1, j −1 i −1, j −1

jIi , j
−β −α

i −1, j i −1, j
−α

i −1,← z R
Q z M + I + z D H

P ;

D ← z R
Q z M + D H

P .i , j
−β −α

i , j −1 i , j −1

paths u

S (u)

1≤i ≤m ,1≤ j ≤n
i , jΣ Σz G = M

.Figure 1: Algorithm to compute the PSWscore for two sequences a ∈ S , b ∈ Sm n

b
With a single query sequence, one typically finds
etween 50% and 90% of all true positives in these

s
o
examples. The number of missed sequences depend
n the divergence of the sequence family, as well as on

r
c
stringency of the significance criterion applied. Fo
ross-standardization, we define equivalent stringency

.
S
levels by a fixed number of false positives accepted

uch an approach may not be totally representative of a
f

t
real application where one does not know the status o
he sequences in advance, but it constitutes the only

s
t
way of ensuring a fair comparison between method
hat express similarity scores on genuinely different

scales.
For each family and domain, we compared the

p
results obtained with three different database search
rograms: BLAST (Altschul et al. 1990), SSEARCH

(Pearson 1991) implementing the native Smith-

i
Waterman algorithm, and an experimental program
mplementing PSW. BLAST was used with the default

u
substitution matrix BLOSUM 62. The scoring system
sed for SSEARCH and PSW consisted of a 10Log -10

-
t
scaled BLOSUM 45 matrix and a gap weighting func
ion w (k )=8 + 4k . The BLOSUM 45 was chosen for

t
the latter two methods because it performed better than
he default BLOSUM 62 matrix used by SSEARCH.

d
The gap weighting function chosen corresponds to the
efault settings in SSEARCH.

t
t

The results shown in Table 1 document a robus
rend of increased sensitivity of the probabilistic

.
T
Smith-Waterman algorithm over the native version

he gain in performance is particularly impressive for
the globin and HSP20 families where the sequence



p
similarities often extend over the entire length of the
roteins compared. Note that in these examples, one

e
r
would have to accept a 10 times higher false positiv
ate with the native Smith-Waterman algorithm in order

-
r
to find as many true members as with the PSW algo
ithm. The increased sensitivity is less evident, or even

,debatable, in the domain examples SH2 and SH3

where a superior performance of PSW over SSEARCH
e

r
is only observed at the highest selectivity level. Thes
esults, if conformed by further experiments, indicate

d
that PSW is the currently most sensitive method to
etect weak similarities between two protein sequences.

D

Table 1. Comparative performance evaluation of PSW, Smith-Waterman, and BLAST algorithms.

ata and methods: Database searches were performed on SWISS-PROT release 32 (Bairoch & Apweiler, 1996) con-
-

p
taining 49340 entries. The following entries were used as query sequences: P02023: human β-globin, P02515: Droso
hila m. heat shock protein 22, P00001: human Cytochrome C, P30542: human adenosine A1 receptor, P12931: human

2
(
proto-oncoprotein Src. The classification of the sequence families and domains is based on PROSITE release 3
Bairoch, Bucher, & Hofmann 1996). The list of G-protein-coupled (GPC) receptors was compiled from the four PRO-

t
SITE entries PS00237, PS00649, PS00979, PS00238. Five additional putative proteins from C. elegans corresponding
o SWISS-PROT entries P41590, P34488, P46564, P46568, P46567, were also considered true positives. Blast searches

p
were performed with the default parameter settings (BLOSUM 62 matrix). PSW and Smith-Waterman searches were
erformed with a BLOSUM 45 matrix and the default gap weights of the program SSEARCH (see text).

Experiment # of true positives missed
 at N false positives accepted

Family Method N=0 N=10 N=100 N=1000

Globin PSW 36 17 10 4
P02023 Smith-Waterman 59 39 19  8
674 members BLAST 95 77 62 50
HSP20 PSW 18 8 2 1
P02515 Smith-Waterman 33 16 11 3
129 members BLAST 43 30 19 14
Cytochrome C PSW 132 113 87 71
P00001 Smith-Waterman 131 131 112 82
243 members BLAST 129 118 103 80
GPC receptors PSW 76 73 65 52
P30542 Smith-Waterman 86 74 67 48
497 members BLAST 108 95 77 60
SH2-domain PSW 14 9 0 0
P12931 (150-247) Smith-Waterman 17 5 0 0
119 members BLAST 21 20 13 1
SH3-domain PSW 20 14 1 1
P12931 (83-144) Smith-Waterman 25 10 6 1
131 members BLAST 30 22 9 2



W

Discussion

e have presented preliminary evidence that current

i
methods for pairwise sequence alignments can be
mproved by interpreting an alignment scoring system

d
m
as a probabilistic model, applying concepts an

ethods that have been introduced to molecular

m
sequence analysis in the context of hidden Markov

odels. The fact that we observe an increase of sensi-
-

W
tivity of the PSW algorithm over the native Smith

aterman algorithm using a scoring system that has
r

c
only been optimized for the latter one, lends furthe
redibility to the this conclusion. It appears likely that

c
an additional improvement of the performance of PSW
an be achieved by fine-tuning the alignment parame-

ters specifically for this method.
Increased sensitivity is not the only benefit resulting

-
m
from a probabilistic interpretation of a sequence align

ent method. Another advantage is the availability of

s
simple statistical tests, e.g. Milosavljević’s algorithmic
ignificance test (Milosavljević & Jurka 1993), to

-
o
assess the significance of database search scores. More
ver, the fact that PSW scores are scaled as absolute

e
n
log likelihood ratios of two probabilities, and thus ar
ot influenced by sequence length effects or the relative

-
t
log-scale of the scoring system, facilitates the optimiza
ion of the gap weighting parameters. The probabilistic

e
c
framework also suggests methods to correct for residu
omposition effects, both regional and global, via com-

-
p
parison to null-models that retain certain statistical pro
erties of the analyzed sequences.

o
f

It needs to be mentioned that we are not the first t
ormulate a probabilistic sequence alignment method.

v
Maximum likelihood approaches have been applied to
arious problems in the field of molecular evolution,

D
including the estimation of the divergence time for two

NA sequences (Bishop & Thompson 1986), the
f

s
optimization of the parameters of a likelihood model o
equence evolution (Thorne, Kishino, & Felsenstein

f
m
1991, 1992), and the assessment of the reliability o

olecular sequence alignments (Thorne & Churchill

t
1995). The computations performed in these applica-
ions rely on the same principles as the PSW algorithm

s
o
in that they achieve the summation of probabilitie
ver an astronomically large number of sequence align-

-
v
ments by means of an efficient recursive procedure pro
en to yield the identical result. McCaskill’s method

-
t
(McCaskill 1990) to compute global and restricted par
ition functions for RNA secondary structures falls also

y
r
into the same class of algorithms and is conceptuall
elated to probability through the notion of entropy.

Despite obvious parallels to earlier work, our presen-

i
tation of a probabilistic sequence alignment algorithm
ncludes several important innovations. One is the non-

.
A
trivial extension from global to local alignment mode

nother one is its application to a new problem,

t
sequence similarity search. The question addressed by
he PSW algorithm is fundamentally different from

d
i
those addressed by maximum likehood methods applie
n molecular evolution. The goal of our method is to

,
p
reach a qualitative decision between two alternatives
resence or absence of significant local sequence simi-

-
i
larity between two sequences, whereas previous max
mum likelihood applications were aimed at quantita-

d
tive estimation of evolutionary parameters such as
ivergence time or the ratio of indel versus substitution

-
e
mutation frequencies. This difference explains the pres
nce of a null-model as integral part of our approach,

i
as well as the consistent absence of such a null-model
n previous work.

Another important difference in our formulation of
-

o
the probabilistic alignment problem compared to previ
us ones is the absence of an underlying model of

-
c
sequence evolution. By dissociating the alignment con
epts from a mandatory phylogenetic interpretation we

-
b
remove an important conceptual obstacle to its applica
ility in contexts where sequence similarity does not

l
f
necessarily mean homology. Therefore, the theoretica
ramework of the PSW algorithm can accommodate

-
t
amino acid substitution matrices derived from an evolu
ionary model (e.g. Dayhoff, Schwartz, & Orcutt 1978)

l
s
as well as indel frequency models based on structura
uperpositions (Pascarella & Argos 1992).

y
p

Sequence similarity search is of course not the onl
ossible application of a probabilistic alignment

t
q
method generalized to local alignment mode. Mos
uestions addressed by previous applications of max-

-
t
imum likelihood, or of the mathematically related parti
ion function calculations, can also be formulated with

-
n
regard to the local alignment problem. Logical combi
ations of this kind include the design of an

e
t
expectation-maximization (EM) algorithm to optimiz
he parameters of a local alignment scoring system for

d
distantly related protein sequences, as well as the
evelopment of a dot matrix method reflecting residue

r
s
association probabilities rather than local segment pai
imilarities.

Implementation Notes

n
e
The results shown in this paper were generated with a
xperimental program implementing a space-efficient

o
version of the algorithms shown in Fig. 1, making use
f the recursion introduced by Gotoh (Gotoh 1982).



r
The program, which is written in FORTRAN 77 and
uns on various UNIX platforms, accepts as command

,
t
line parameters a query sequence, a substitution matrix
wo gap probability parameters, a maximum length of

f
database sequences to be processed, and a cut-off value
or PSW scores to be reported in the output. The

e
p
sequence database is read from the standard input. Th
rogram starts by computing the sequence-independent

quantity z for all relevant length pair com-Σ
pathsu

S (a,b,u)

b

G

inations, making a single path through the algorithm
s

t
shown on the right side of Figure 1, and then processe
he sequence database sequentially by applying the

i
algorithm shown on the left side of Figure 1 to each
ndividual sequence.

Since no effort has been invested to optimize the
-

p
speed of the program, no realistic time-efficiency com
arisons between the PSW and the native Smith-

c
Waterman algorithm can be made at this point. The
urrent experimental program is at least ten times

,
1
slower than Pearson’s program SSEARCH (Pearson
991). Comparison with an HMM search program

e
s
(Hughey & Krogh 1995) performing essentially th
ame type of computations, suggests that a time-

s
efficiency trimmed PSW implementation sacrificing
ome arithmetic precision will only take between two

e
S
and three times more time than publicly availabl

mith-Waterman database search programs.
s

w
The experimental PSW implementation used in thi

ork is available upon request from the authors. We

o
are in the process of preparing a faster public version
f the program which will be made available from our

ftp site (URL ftp://ulrec3.unil.ch).
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