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Abstract

We present a probabilistic interpretation of local
sequence alignment methods where the alignment scor-
ing system (ASS) plays the role of a stochastic process
defining a probability distribution over all sequence
pairs. An explicit agorithm is given to compute the pro-
bability of two sequences given an ASS. Based on this
definition, a modified version of the Smith-Waterman
local similarity search algorithm has been devised,
which assesses sequence relationships by log likelihood
ratios. When tested on classical examples such as glo-
bins or G-protein-coupled receptors, the new method
proved to be up to an order of magnitude more sensitive
than the native Smith-Waterman algorithm.

I ntroduction

The comparison of a new protein sequence against a
database of known proteins is perhaps the most impor-
tant computer application in molecular sequence
analysis. It is generally accepted that the Smith-
Waterman local similarity search agorithm (Smith &
Waterman 1981) is the most sensitive technique to dis-
cover significant weak similarities between two
sequences. The more frequently used heuristic algo-
rithms implemented in the programs FASTA (Pearson
1990) and BLAST (Altschul et a. 1990) can be con-
sidered approximations or special cases of a full
Smith-Waterman algorithm offering high speed in
exchange for reduced sensitivity.

The Smith-Waterman algorithm maximizes an align-
ment scoring function over all possible local alignments
between two sequences. The scoring function depends
on a set of parameters referred to as an alignment scor-
ing system, which consists of a residue substitution
matrix and a linear gap penaty function. Optimal
alignment scores computed by a Smith-Waterman or
related sequence alignment algorithm have traditionally
been viewed and interpreted as measures of similarity
or distance (Smith, Waterman, & Fitch 1981). Con-
cerning their mathematical properties, they were shown

to define a metric over the sequence space (e.g. Sellers
1974).

Here, we advocate a different view of local sequence
alignment methods, in which the scoring system plays
the role of a stochastic process generating pairs of
related sequences. Based on such an interpretation, we
propose a modified version of a Smith-Waterman algo-
rithm where the score computed for two sequences is a
log likelihood ratio of two probabilities, one given the
scoring system, and one given a null-model. The
mathematical concepts underlying this approach is
closely related to maximum likelihood estimation for
global sequence alignments (e.g. Bishop & Thompson
1986). The performance of the new database search
technique is assessed by test protocols previously used
for the evaluation of aternative alignment scoring sys-
tems.

Review of the Native Smith-Waterman
Algorithm

Let a=aja, --a, and b=bsb,---b, be two
sequences of residues from an alphabet S containing N
elements. A local sequence alignment between two
such sequences is defined by an alignment path
represented as an ordered set of index pairs
u= (leyl)i (X21y2)1 e (XI 1y|) . Each index palr
identifies a pair of matched residues in the sequence
alignment. A valid path u for sequences a and b
sdatisfies the following conditions:  X+1>%¢ » Yi+1>Yk
X<m, y<n .

An aignment scoring system (ASS) consists of a
substitution matrix and a gap weighting function. The
substitution matrix defines substitution scores s(a,b)
for pairs of residues (a,b) 0 S%. The gap weighting
function assigns weights w(k) = a + Bk to insertions
and deletions of length k=1. For gap length zero, we
define w(0) = 0.



The scoring system assigns an alignment score S, to
any local sequence alignment (a,b,u):

|
S(@bu) = Fs(aby) (1)
=1
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k=1

Note that the alignment score can be described as the
sum of two components, a sequence-dependent match
score:

|
Sa(@bu) = ¥ s(a by, (29
=1

and a sequence-independent gap score:
1-1
SU) = = 2 WX DHW (Yi—¥—1) (2b)
k=1
These two definitions will be useful in the formulation
of the probabilistic version of the Smith-Waterman
algorithm. The native Smith-Waterman algorithm com-
putes the optima local alignment score for two
sequences:

SWscore(a,b) = r;jr?x Sa(a,b,u), 3
paths u

which serves as a measure of sequence similarity in
database search applications. An efficient procedure to
compute SWscore(a,b) is described in (Gotoh 1982).

Probabilistic Smith-Waterman (PSW)
Algorithm

The probabilistic version of the Smith-Waterman algo-
rithm is based on an analogy between alignment scor-
ing systems (ASSs) and hidden Markov models
(HMMs), a class of statistical models that have recently
been introduced to molecular sequence analysis (Baldi
et al. 1994, Krogh et a. 1994). This analogy comprises
the following ideas and assumptions:

(i) An HMM defines a probability distribution over
the sequence space by means of a stochastic pro-
cess involving a random walk through the model.
An ASS defines a probability distribution over the
space of sequence pairs by means of a stochastic
process involving a random walk through an
alignment path matrix.

(ii) The probahbility of a sequence a being generated
by an HMM is the sum of the probabilities of
sequence a being generated via a particular path
u:

Probyum(@ = 2 Probyum(au)
paths u
over al possible paths through the model.
The probability of a sequence pair a,b being gen-
erated by an ASS is the sum of the probabilities
of sequence pair a,b being generated via a partic-
ular path u:

Probass(@b) = 3 Probass(ab,u)
paths u

over al valid local alignment paths.

(iii) In database applications, membership of a
sequence a to an HMM-defined sequence class is
estimated by an HMMscore which has the form
of alog likelihood ratio:

Probyvm(2)
Probnul | (a)

where Prob,,, (a) is the probability of sequence a
given a specific null-model.

In a probabilistic Smith-Waterman search, an
ASS-defined kind of similarity between two
sequences a,b will be estimated by a PSWscore
of the following type:

HMMscore(a) = log

Probass(a,b)
PrObnul | (a, b)

What remains to be done in order to implement the
method suggested by this analogy, is to chose an
appropriate null-model for random sequence pairs, and
to work out a reasonable definition for the probability
of a local sequence alignment Prob,sg(a,b,u) based on
the definition of the alignment score.

The null-model we choose has the general form:

Probnui(a,b) = PL(m,n)Pq(ab) 4)

where P_(m,n) is a length distribution over sequence
length pair classes, and Py(a,b) is the null-model pro-
bability of sequence pair a,b given the length pair pair
class n,m, which is defined as follows:

Po@b) = [1p(@) [1pb) 5

i=1 j=1

PSWscore(a,b) = log

where p(a) denotes the null-model probability of resi-
due a. The null-model thus essentially consists of a
residue probability distribution over the alphabet S.

The distribution of sequence length pair classes will
be the same for the null-model and the ASS-defined
probability distribution. For reasons that will become
clear later, we reqguire that there is a logarithmic base z
such that:



> p@pDO)ZED =1, (6)
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Note that log-odds substitution matrices, such as those
from the PAM or BLOSUM series (Henikoff &
Henikoff 1992), have known mutational equilibrium
compositions and logarithmic bases satisfying the
above condition. If a different residue composition is
used as null-model, there will always be a unique solu-
tion for z solving the above equation, if the substitution
matrix satisfies the conditions necessary for loca
sequence alignments (Altschul 1991).
The ASS-defined probability distribution has the gen-
eral form:

Probass(ab) = PL(m,n)P4(a,b) ()

where P,(ab) is the ASS-defined probability of
sequence pair a,b, given the length pair class n,m. The
precise nature of the length pair class distribution is
irrelevant, as long as it is the same for the null-model
and the ASS, since the term P (m,n) cancels itself in
the definition of the PSWscore:

PrObAss(a,b)

PSWscore = ——— 8
Probye (a.b) ®

> PL(n,m) Pa(ab,u)
paths u

P (n,m)Py(a,b)

> Pa(ab,u)

paths u

Po(ab)

For sequences of a given length par class
aldS™ b0OS", the probability of a sequence align-
ment (a,b,u) will be defined as follows:

Sy (ab,u)
Po(a,b)
B(n,m) ©

where S, (a,b,u) is the local alignment score of (a,b,u)
as defined by equation 1, and B (n,m) is a length nor-
malization term whose functions is to ensure that the
probabilities of all sequence pairs of length pair class
m,n sum to one. The definition of the alignment pro-
bability is natural if one interprets Smith-Waterman
scores as log likelihood ratios, as suggested by Altschul
(Altschul 1991). The length normalization term obvi-
ously has to satisfy:

B(n,m) = >

als™,bOS" paths u

Pa(ab,u) =

22" pyab) (10

We will show that the expression for B (m,n) simplifies
to

5 7BY (12)
paths u
where S (u) is the gap score of alignment path u as

defined by equation 2b, if the null-model satisfies the
constraint imposed by equation 6. Let us first rewrite
the expression for B(m,n) as follows:

B(h,m) =

Bmn) = I =Y v M*®pap @2
paths u ads™ bOs"

where S, (a,b,u) is the match score of the sequence
alignment (a,b,u) as defined by equation 2a. The inner
sum in the above expression can be rewritten as shown
below, using the notation Vv, Vyy ,
wiw, - - - W, for the residues of sequences a and b,
which are not part of a matched residue pair defined by
path u:

s M pab)
ads™ bOs"

m-I n-l | s(ay, by )
= [1p(@,)[ 1oy 1P, )P (0, )2 i
=1 =1

alsS™ bOS" k=1

m-l n-l |
- {Z p(a)} {Z p(b)} { > p@@)p(b)zs@»
ads b0s alsbOs

=1.

Combining equations 8, 9, and 11, we obtain the fol-
lowing intuitively plausible expression for the
PSWscore:
5 Sh@bw
paths u
;6
paths u

PSWscore(a,b) = (13)

Both sums in the log likelihood ratio can efficiently be
computed by special cases of the forward agorithm
used for computation of HMM scores (Krogh et al.
1994, Rabiner 1989). Numerical recipes are given in
Figure 1.

Performance Evaluation of the PSW
Algorithm

In order to compare the sensitivities of the PSW algo-
rithm and the native Smith-Waterman algorithm, we
performed paralel database searches on SWISS-PROT
release 32 (Bairoch & Apweiler 1996) with prototype
query sequences from known protein families and
domains, including the globins, the hsp20 family, cyto-
chrome C, the G protein-coupled receptor family, and
SH2, SH3 as domain examples. The results of these
tests are shown in Table 1.
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Figure 1: Algorithm to compute the PSWscore for two sequencesa 0 S™, b O S .

With a single query sequence, one typically finds
between 50% and 90% of al true positives in these
examples. The number of missed sequences depends
on the divergence of the sequence family, as well as on
stringency of the significance criterion applied. For
cross-standardization, we define equivalent stringency
levels by a fixed number of false positives accepted.
Such an approach may not be totally representative of a
real application where one does not know the status of
the sequences in advance, but it constitutes the only
way of ensuring a fair comparison between methods
that express similarity scores on genuinely different
scales.

For each family and domain, we compared the
results obtained with three different database search
programs. BLAST (Altschul et al. 1990), SSEARCH

(Pearson 1991) implementing the native Smith-
Waterman algorithm, and an experimental program
implementing PSW. BLAST was used with the default
substitution matrix BLOSUM 62. The scoring system
used for SSEARCH and PSW consisted of a 10Log o
scaled BLOSUM 45 matrix and a gap weighting func-
tion w(k)=8 + 4k. The BLOSUM 45 was chosen for
the latter two methods because it performed better than
the default BLOSUM 62 matrix used by SSEARCH.
The gap weighting function chosen corresponds to the
default settings in SSEARCH.

The results shown in Table 1 document a robust
trend of increased sensitivity of the probabilistic
Smith-Waterman agorithm over the native version.
The gain in performance is particularly impressive for
the globin and HSP20 families where the sequence



similarities often extend over the entire length of the
proteins compared. Note that in these examples, one
would have to accept a 10 times higher false positive
rate with the native Smith-Waterman algorithm in order
to find as many true members as with the PSW algo-
rithm. The increased sensitivity is less evident, or even
debatable, in the domain examples SH2 and SH3,

where a superior performance of PSW over SSEARCH
is only observed at the highest selectivity level. These
results, if conformed by further experiments, indicate
that PSW is the currently most sensitive method to
detect weak similarities between two protein sequences.

Experiment # of true positives missed
atN false positives accepted

Family Method N=0 | N=10 | N=100| N=1000
Globin PSW 36 17 10 4
P02023 Smith-Waterman 59 39 19 8
674 members BLAST 95 v 62 30
HSP20 PSW 1§ 8 2 il
P02515 Smith-Waterman 33 16 11 3
129 members BLAST 43 30 19 14
Cytochrome C PSW 132 113 87 71
P0O0001 Smith-Waterman 131 131 112 §2
243 members BLAST 129 118 103 30
GPC receptors | PSW 76 73 65 53
P30542 Smith-Waterman 86 74 6[7 48
497 members BLAST 108 956 17 40
SH2-domain PSW 14 9 0 0
P12931 (150-247) Smith-Waterman 17 5 0 0
119 members BLAST 21 20 13 1
SH3-domain PSW 2( 14 1 1
P12931 (83-144)| Smith-Waterman 25 10 6 1
131 members BLAST 30 2p 9 2

Table 1. Comparative performance evaluation of PSW, Smith-Waterman, and BLAST algorithms.

Data and methods. Database searches were performed on SWISS-PROT release 32 (Bairoch & Apweliler, 1996) con-
taining 49340 entries. The following entries were used as query sequences. P02023: human (-globin, P02515; Droso-
phila m. heat shock protein 22, POO001: human Cytochrome C, P30542: human adenosine A1 receptor, P12931: human
proto-oncoprotein Src. The classification of the sequence families and domains is based on PROSITE release 32
(Bairoch, Bucher, & Hofmann 1996). The list of G-protein-coupled (GPC) receptors was compiled from the four PRO-
SITE entries PS00237, PS00649, PS00979, PS00238. Five additional putative proteins from C. elegans corresponding
to SWISS-PROT entries P41590, P34488, P46564, P46568, P46567, were also considered true positives. Blast searches
were performed with the default parameter settings (BLOSUM 62 matrix). PSW and Smith-Waterman searches were
performed with a BLOSUM 45 matrix and the default gap weights of the program SSEARCH (see text).



Discussion

We have presented preliminary evidence that current
methods for pairwise sequence alignments can be
improved by interpreting an alignment scoring system
as a probabilistic model, applying concepts and
methods that have been introduced to molecular
sequence analysis in the context of hidden Markov
models. The fact that we observe an increase of sensi-
tivity of the PSW agorithm over the native Smith-
Waterman algorithm using a scoring system that has
only been optimized for the latter one, lends further
credibility to the this conclusion. It appears likely that
an additional improvement of the performance of PSW
can be achieved by fine-tuning the alignment parame-
ters specifically for this method.

Increased sensitivity is not the only benefit resulting
from a probabilistic interpretation of a sequence align-
ment method. Another advantage is the availability of
simple statistical tests, e.g. Milosavljevi¢'s algorithmic
significance test (Milosavljevi¢ & Jurka 1993), to
assess the significance of database search scores. More-
over, the fact that PSW scores are scaled as absolute
log likelihood ratios of two probabilities, and thus are
not influenced by sequence length effects or the relative
log-scale of the scoring system, facilitates the optimiza-
tion of the gap weighting parameters. The probabilistic
framework also suggests methods to correct for residue
composition effects, both regional and global, via com-
parison to null-models that retain certain statistical pro-
perties of the analyzed sequences.

It needs to be mentioned that we are not the first to
formulate a probabilistic sequence alignment method.
Maximum likelihood approaches have been applied to
various problems in the field of molecular evolution,
including the estimation of the divergence time for two
DNA sequences (Bishop & Thompson 1986), the
optimization of the parameters of a likelihood model of
sequence evolution (Thorne, Kishino, & Felsenstein
1991, 1992), and the assessment of the reliability of
molecular sequence alignments (Thorne & Churchill
1995). The computations performed in these applica
tions rely on the same principles as the PSW algorithm
in that they achieve the summation of probabilities
over an astronomically large number of sequence align-
ments by means of an efficient recursive procedure pro-
ven to yield the identical result. McCaskill’s method
(McCaskill 1990) to compute global and restricted par-
tition functions for RNA secondary structures falls also
into the same class of algorithms and is conceptually
related to probability through the notion of entropy.

Despite obvious parallels to earlier work, our presen-
tation of a probabilistic sequence alignment agorithm
includes several important innovations. One is the non-
trivial extension from global to local aignment mode.
Another one is its application to a new problem,
seguence similarity search. The question addressed by
the PSW algorithm is fundamentally different from
those addressed by maximum likehood methods applied
in molecular evolution. The goal of our method is to
reach a qualitative decision between two aternatives,
presence or absence of significant local sequence simi-
larity between two sequences, whereas previous max-
imum likelihood applications were aimed at quantita
tive estimation of evolutionary parameters such as
divergence time or the ratio of indel versus substitution
mutation frequencies. This difference explains the pres-
ence of a null-model as integral part of our approach,
as well as the consistent absence of such a null-model
in previous work.

Another important difference in our formulation of
the probabilistic alignment problem compared to previ-
ous ones is the absence of an underlying model of
sequence evolution. By dissociating the alignment con-
cepts from a mandatory phylogenetic interpretation we
remove an important conceptual obstacle to its applica-
bility in contexts where sequence similarity does not
necessarily mean homology. Therefore, the theoretical
framework of the PSW agorithm can accommodate
amino acid substitution matrices derived from an evolu-
tionary model (e.g. Dayhoff, Schwartz, & Orcutt 1978)
as well as indel frequency models based on structural
superpositions (Pascarella & Argos 1992).

Sequence similarity search is of course not the only
possible application of a probabilistic aignment
method generalized to local alignment mode. Most
questions addressed by previous applications of max-
imum likelihood, or of the mathematically related parti-
tion function calculations, can also be formulated with
regard to the local alignment problem. Logica combi-
nations of this kind include the design of an
expectation-maximization (EM) agorithm to optimize
the parameters of a local alignment scoring system for
distantly related protein sequences, as well as the
development of a dot matrix method reflecting residue
association probabilities rather than local segment pair
similarities.

Implementation Notes

The results shown in this paper were generated with an
experimental program implementing a space-efficient
version of the algorithms shown in Fig. 1, making use
of the recursion introduced by Gotoh (Gotoh 1982).



The program, which is written in FORTRAN 77 and
runs on various UNIX platforms, accepts as command
line parameters a query segquence, a substitution matrix,
two gap probability parameters, a maximum length of
database sequences to be processed, and a cut-off value
for PSW scores to be reported in the output. The
sequence database is read from the standard input. The
program starts by computing the sequence-independent
. S (@b,u) i
quantity > z for al relevant length pair com-

pathsu
binations, making a single path through the algorithm

shown on the right side of Figure 1, and then processes
the sequence database sequentially by applying the
algorithm shown on the left side of Figure 1 to each
individual sequence.

Since no effort has been invested to optimize the
speed of the program, no realistic time-efficiency com-
parisons between the PSW and the native Smith-
Waterman algorithm can be made at this point. The
current experimental program is at least ten times
sower than Pearson’s program SSEARCH (Pearson,
1991). Comparison with an HMM search program
(Hughey & Krogh 1995) performing essentialy the
same type of computations, suggests that a time-
efficiency trimmed PSW implementation sacrificing
some arithmetic precision will only take between two
and three times more time than publicly available
Smith-Waterman database search programs.

The experimental PSW implementation used in this
work is available upon request from the authors. We
are in the process of preparing a faster public version
of the program which will be made available from our
ftp site (URL ftp://ulrec3.unil.ch).
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