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abstract

A 
exible motif search technique is presented which has two major components:

1. a generalized pro�le syntax serving as a motif de�nition language

2. a motif search method speci�cally adapted to the problem of �nding multiple instances of a motif in the
same sequence.

The new pro�le structure, which is the core of the generalized pro�le syntax, combines the functions of
a variety of motif descriptors implemented in other methods, including regular expression-like patterns,
weight matrices, previously used pro�les, and certain types of hidden Markov models (hmms).

The relationship between generalized pro�les and other biomolecular motif descriptors is analyzed in
detail, with special attention to hmms. Generalized pro�les are shown to be equivalent to a particular
class of hmms, and conversion procedures in both directions are given. The conversion procedures provide
an interpretation for local alignment in the framework of stochastic models, allowing for clear, simple
signi�cance tests.

A mathematical statement of the motif search problem de�nes the new method exactly without
linking it to a speci�c algorithmic solution. Part of the de�nition includes a new de�nition of disjointness
of alignments.

Keywords: Pro�les, hidden Markov models, hmms, prosite, motif search, local alignment, disjointness
of alignments
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1 Introduction

The ultimate goal of the various genome sequencing projects is to understand the information contained in a
genetic program. Elucidation of the complete base sequence of an organism's genome, or of the complete amino
acid sequence of its protein inventory, constitutes only the �rst step towards this goal. The real challenge lies
in the interpretation of these data by automatic procedures. Understanding genetic information in the scienti�c
sense means the ability to predict the biological function of a base sequence through application of explicit rules.

The degeneracy of genetic coding mechanisms constitutes the major di�culty in this endeavor. This problem
arises both at the level of gene and at the level of protein sequence. For instance, gene expression signals having
the same function can exhibit a remarkable degree of sequence variation. Likewise, protein domains having similar
3D-structures may vary greatly in amino acid sequence. Despite this surprising diversity, groups of biologically
related sequences usually do share some common properties. The totality of these common properties is called
a sequence motif.

The role of a motif search technique in gene and protein function prediction is to decompose a large sequence
into smaller subsequences constituting elementary structural modules or control units of elementary physiological
processes. In a typical application, a new sequence of unknown function is compared against a database of
many known motifs. A technique suitable for this purpose has two clearly distinguishable but operationally
interdependent components. The �rst one is a motif descriptor or motif de�nition language, used to describe
the motif; the second is a search method used to locate instances of the already de�ned motif in a particular
sequence.

The motif search technique described here is the result of an attempt to conceptually unify and to combine
the functions of many seemingly di�erent approaches into a single method. Although it has been developed to
support a recent format extension of the prosite data bank [Bairoch, 1993], it is designed as a general tool
applicable in many other contexts.

The central component of the new motif de�nition language for prosite is a motif descriptor called a
generalized pro�le. Accessory syntactic features control search options and other operations pertinent to motif-
based sequence interpretation to make up a motif de�nition language called generalized pro�le syntax. A more
detailed description of the generalized pro�le syntax together with biological examples can be found in [Bucher
and Bairoch, 1994].

One objective of this paper is to de�ne the search method for generalized pro�les by an exact formulation
of the mathematical problem, leaving no ambiguities to its implementation by a speci�c algorithm. (E�cient
algorithms to solve the problem will be presented elsewhere.) A second goal of the paper is to clarify the
relationships between various biomolecular motif descriptors, in particular between generalized pro�les and the
recently introduced hidden Markov models (hmms), hoping that a better understanding of these relationships
will facilitate communication between research communities and interoperability of research methodologies in
the �eld.

The rest of this paper is divided into �ve major sections: Section 2 surveys the di�erent motif descriptors
that have been used, Section 3 describes the structure of the generalized pro�les now used in prosite, Section 4
shows the equivalence between generalized pro�le alignments and Viterbi paths in a class of hidden Markov
models (hmms), Section 5 gives a description of the motif search problem, and Section 6 gives comparisons using
hmms and generalized pro�les to classify Swiss-Prot into globins and non-globins.

An appendix is provided to present in detail the algorithm used to compute optimal alignment scores for
general pro�les. Since this algorithm is almost identical with the dynamic programming algorithms used for
sequence, pro�le, and hmm alignment, it can be skipped by most readers.
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2 Survey of biomolecular motif descriptors

A motif descriptor is a data structure used to de�ne a sequence motif. Frequently used biomolecular motif
descriptors include consensus sequences, weight matrices, and pro�les. A motif de�nition based on such a
descriptor may serve various functions in a motif search operation. A common capacity of all motif de�nitions is
that they de�ne a subset of potentially interesting sequences, either in an exact or probabilistic way. In addition,
they may assign a score to a potential motif match or de�ne a speci�c alignment between a sequence and an
intrinsic model.

An exact word by itself does not qualify as a motif, but provides a didactically useful starting point to
develop the hierarchical classi�cation system of motif descriptors shown in Figure 1. One way of introducing
sequence variation into an exact word is by allowing a set of alternative residues to occur at certain positions.
The resulting motif descriptor is referred to as consensus sequence with degenerate positions. Another way of
introducing sequence variation is by allowing a small number of mismatches to occur, irrespective of position.
This leads to a so-called consensus sequence with mismatches. The two strategies can be combined into a more
general type of consensus sequence.

Consensus sequences with degenerate positions and consensus sequences with mismatches represent di�erent
classes of motif descriptors. The former is a qualitative descriptor which identi�es members of a sequence set.
The latter is a quantitative descriptor which assigns a distance measure (the number of mismatches relative to
the consensus) to each sequence of the corresponding length class. Only in conjunction with a cut-o� value does
such a consensus sequence de�ne a subset of the sequence space. However, a cut-o� value is typically considered
a parameter of a search method rather than a parameter intrinsic to the motif de�nition.

A weight matrix is a more 
exible type of quantitative motif descriptor containing weights or scores for each
residue at each position. The total score assigned to a sequence of the same length is the sum of corresponding
residue scores over all positions. A weight matrix score usually re
ects similarity rather than distance. Weight
matrices have been applied with great success to a variety of gene control signals mediated by sequence-speci�c
DNA binding proteins (for example, see [Staden, 1984], and for reviews see [Stormo, 1988, Claverie, 1994]). The
power of weight matrices results from their capacity to distinguish between mismatches of varying degrees of
severity.

The regular-expression used in the prosite data bank [Bairoch, 1993] can be viewed as an extension of a
consensus sequence with degenerate positions. Each position of such a pattern can be occupied by any residue
from of speci�ed set of acceptable residues, and in addition can be repeated a variable number of times within
a speci�ed range. Moreover, the pattern syntax provides features to anchor a pattern at the beginning or at the
end of a sequence. Prosite patterns are qualitative motif descriptors, like consensus sequences with degenerate
positions, but di�er from the former in an important way. They are variable-length motif descriptors assigning
membership to a sequence class through the intermediate of an alignment between the sequence and the motif.
Because di�erent alignments are possible, a single sequence can match a pattern in di�erent ways, as illustrated
by the example in Figure 2. This raises the question whether the notion of a motif instance should be applied
to a sequence matching the motif in one or several ways, or to a speci�c alignment between a sequence segment
and the motif. The latter solution seems more appropriate because individual positions of prosite patterns are
often associated with speci�c biological functions mapped to the sequence via the alignment. In such cases, two
alternative alignments represent two biological hypotheses which can be tested by experiment.

The 
exible patterns described by [Barton and Sternberg, 1990] combine elements of weight matrices and
prosite patterns. This type of pattern consists of an alternating series of residue positions and gaps. Each
residue position contains a set of weights for each residue of the sequence alphabet. The gaps de�ne length
ranges for spacer segments consisting of any sequence. Flexible patterns have been presented as a method to
detect weak structural similarities of protein domains. The sequence targets used in [Mulligan et al., 1984] to
characterize and locate E. coli promoters are very similar to 
exible patterns. The only extension is a scoring
scheme for variable-length spacer segments.

Flexible patterns and sequence targets are the simplest examples of a quantitative variable-length motif
descriptor. They clearly represent generalizations of a weight matrix just as a prosite pattern represents a
generalization of a consensus sequence with degenerate positions. The relationship between prosite patterns
and 
exible patterns is less obvious. The former contains some syntactic features that cannot be translated
into the latter, for instance those allowing �xing a motif at the beginning or at the end of a sequence. Also,
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PROSITE pattern
(Bairoch 1993)

Consensus sequence with
degenerate positions and mismatches

Flexible pattern
(Barton & Sternberg 1990)

Sequence target
(Mulligan et al. 1984)

(Bucher & Bairoch 1994)
Generalized profile

Weight matrix
(e.g. Staden 1984, Stormo 1988)

Profile
(Gribskov et al. 1987, 1990)

Consensus sequence
with mismatches

Consensus sequence
with degenerate positions

Exact  word

(e.g. Krogh et al. 1994, Baldi et al.1994)
Linear hidden Markov model

General hidden Markov model

Stochastic context-free grammar
(Sakakibara, et al. 1994)

Figure 1: Relationships between various motif descriptors. Motif descriptors are arranged by increasing
complexity along the vertical axis. An arrow indicates that the upper descriptor can be understood as
a special case of the lower descriptor. Broken lines mean that the mapping is only approximate, or that
there are exceptions which cannot be mapped to the more general descriptor (see text).
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C -x(4,6)-[FYH]-x(5,10)- C -x(0,2)- C -x(2,3)- C -x(7,11)- C -x(4,6)-[DNEQSP]-x(2)- C
| | | | | | |

C C C C CN---FN--- ---SL--- -LNGTVHLS- --QEKQ--- -------TV--C

-x(4,6)-[FYH]-x(5,10)- C -x(0,2)- C -x(2,3)- C -x(7,11)- C -x(4,6)-[DNEQSP]-x(2)- C
| || | | | | |

Y C C C C CN-RHYWSENLFQ- ---FN--- ---SL--- -LNGTVHLS- --QEKQ--- -------TV----RKNQ----C

-YWSENLFQ-H
|

--RKNQYR---

C

Figure 2: Two alternative alignments between a prosite pattern and a sequence. The prosite pattern
(Acc. PS00652) describes a cysteine-rich motif of the TNFR/NGFR family. The sequence corresponds
to positions 127-166 of the TNF receptor 1 precursor (Swiss-Prot Acc. P19438). The �gure illustrates
the fact that the same sequence segment can match a variable-length motif in various ways, representing
alternative biological hypotheses.

prosite patterns permit variable number repetitions of any kind of positions whereas 
exible patterns and
sequence targets restrict this possibility to spacer positions. In practice, most prosite patterns are convertible
into 
exible patterns, because the incompatible features are rarely used.

The pro�les introduced by [Gribskov et al., 1987, Gribskov et al., 1990] implement the idea of aligning a
�xed-length weight matrix to variable-length sequences allowing for gaps in either component. The structure of
a pro�le is very similar to that of a weight matrix. Each position contains, in addition to a complete set of residue
weights, two numbers de�ning a linear gap penalty function for insertions and deletions starting at this position.
Pro�les are typically searched for with a local alignment algorithm similar to the one introduced by [Smith and
Waterman, 1981]. The parameters of a pro�le are usually derived from a multiple sequence alignment [Gribskov
et al., 1990], with or without inclusion of secondary structure information [L�uthy et al., 1991], but can also
be derived from a 3D-structure model [Bowie et al., 1991]. Although simpler in structure, pro�les constitute a
higher level of generality than 
exible patterns or sequence targets.

Recently, hidden Markov models (hmms) of a speci�c architecture (here called linear hidden Markov models)
were introduced to molecular biology [Haussler et al., 1993, Baldi et al., 1994]. These models resemble previously
described motif descriptors in that they also assign a number, in this case a probability, to a speci�c alignment
of a sequence to the model. The architectures proposed contain a higher number of parameters per length than
pro�les, allowing for a more 
exible treatment of deletions and insertions. In this respect, they are more general
than pro�les. From another perspective, these architectures are more restrictive because they do not implement
local alignment scoring modes. There are, however, simple modi�cations to hidden Markov models that allow a
very close equivalence with generalized pro�les, as will be shown in Section 4.

In fact, a motif description based on any of the more restrictive descriptors can be represented by a generalized
pro�le, but the conversion procedure is not always as simple as the conversion from hmms presented here.1

The generalization of the linear hidden Markov models to generalized pro�les does not exhaust the possibilities
of hmms, as general (non-linear) hmms are also useful motif descriptors [Karplus, 1994, Fujiwara et al., 1994].
Furthermore, stochastic context-free grammars (SCFGs) generalize linear hmms in a di�erent way, and have been
found useful for characterizing RNA motifs [Sakakibara et al., 1994]. This paper will concentrate on generalized
pro�les and the equivalent hmms, not exploring more general hmms and SCFGs.

In summary, biomolecular motif descriptors fall into four subclasses: qualitative, �xed-length; quantitative,
�xed-length; qualitative, variable-length; and quantitative, variable-length. The most general case is a quantita-
tive, variable-length motif descriptor assigning a similarity score to all possible alignments of all sequences to
the motif. Qualitative motif descriptors �t into this concept by assuming that they assign the same maximal
value to all motif instances. Fixed-length motifs can be integrated by pretending that they assign very low scores
(written as �1) to alignments of sequences not belonging to the corresponding length class.

1The detailed techniques for converting the restrictive descriptors to generalized pro�les are available from Philipp Bucher.

Draft Copy|January 24, 1996|Do not circulate.



3. The structure of a generalized pro�le 5

6

7

5

4

3

2

1

0
p

r

o

f

i

l

e

. . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

S E U E N C EQ

S  E  Q  -  -  U  E  N
r  -  -  o  f  i  -  l

.

0

Gap representation: 

Path matrix:
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31 2 4 5 6 7 8

Figure 3: Three representations of a pro�le-sequence alignment. Note that each column in the gap
representation corresponds to an elementary segment of the alignment path shown in the middle. The
coordinate sequence at the bottom is a numeric representation of the alignment.

3 The structure of a generalized pro�le

The goal of generalized pro�les is to combine the functions of all simpler motif descriptors surveyed in
Section 2. It follows from this objective, and from the speci�c concept of a motif instance introduced before,
that the function of a generalized pro�le will be that of an alignment scoring device. The notion of a pro�le-
sequence alignment is thus central to its design and the properties of such an alignment largely determine its
structure.

3.1 Pro�le-sequence alignments

The de�nition of a pro�le-sequence alignment is not as obvious as it might appear. Di�erent alignment
concepts have been introduced to molecular sequence analysis and still coexist in this �eld. The speci�c
alignment type upon which generalized pro�les are based must therefore be speci�ed. Its characteristic features
are highlighted in Figure 3 by means of three alternative representations of an alignment example. The gap
representation shows the alignment as it would appear in a computer program output or in a scienti�c publication.
The path matrix diagram represents the alignment as a path through a 2D coordinate system. The coordinate
sequence is a numeric representation of this path. This representation is the basis of the alignment de�nition
given in Section 3.3.

The most obvious disparity between di�erent alignment types is that between local alignment and global

alignment. A local alignment can begin and end anywhere in the pro�le and anywhere in the sequence, while
a global alignment must begin and end at the edges of the sequence and the pro�le. The alignment shown in
Figure 4 is local, since it does not use all of the pro�le. It is natural that generalized pro�les are based on
local alignments since local alignments are more general, including global alignment as a special case. Various

Draft Copy|January 24, 1996|Do not circulate.



3. The structure of a generalized pro�le 6

in-

sert

pos

0

match

pos. 1

in-

sert

pos

in-

sert

pos

in-

sert

pos

in-

sert

pos

in-

sert

pos

1 x-1 x m-1 m

matchmatch

pos. x pos. m... ...

Figure 4: Structure of a generalized pro�le. The schematic representation de�nes the numbering
conventions applying to pro�le components. The match and insert positions, represented by circles
and ellipses, can be thought of as boxes containing position-speci�c parameters for alignment scoring.

restrictions on the parameters of a generalized pro�le can be placed to get global alignment or any of several
other intermediate alignment styles between local and global, as described in Table 2.

Another ambiguity in the sequence alignment concept concerns the succession of di�erent alignment com-
ponents: matches, deletions, and insertions. The classical method of Needleman and Wunsch [Needleman and
Wunsch, 1970] prohibits direct transitions between insertions and deletions. This restriction is also built into
the pro�le alignment algorithm described by Gribskov et al. [Gribskov et al., 1990]. Most other methods, how-
ever, do allow such con�gurations (for example, [Sanko�, 1972, Sellers, 1974, Smith and Waterman, 1981]). The
alignment example in Figure 3 makes clear that generalized pro�les also allow such con�gurations.

Finally, there is an ambiguity concerning the representation of an alignment by a coordinate sequence. The
approach chosen by us is to list every coordinate of an alignment path. A more commonly used, but less precise
representation lists only the coordinates pertaining to match steps (diagonal segments of the alignment path).
Using the match-only approach, the alignment shown in Figure 3 could be de�ned by only three coordinate pairs.
The e�ects of the two alternative representations on the combinatorial complexity of the alignment space have
been analyzed by Waterman [Waterman, 1989]. The assumption underlying the less precise approach is that the
order of adjacent gaps representing pairs of unmatched sequence segments is not important. This is justi�ed in
a pairwise sequence alignment where insertions and deletions are weighted symmetrically by an external scoring
system. However, in the case of a pro�le-sequence alignment where all weights are provided by the pro�le in
a position-speci�c way, the location of insertions could a�ect the alignment score. Thus, the use of the more
precise representation is indicated.

3.2 Parameters of a generalized pro�le

The structure of a generalized pro�le is schematized in Figure 4. It consist of an alternating sequence of
match and insert positions, starting and ending with an insert position. The match positions are analogous to
the letters of a sequence. The insert positions have no obvious counterpart in the sequence. The path matrix
diagram in Figure 3 makes clear why two types of positions are needed. The horizontal segments of the alignment
path, representing insertions relative to the pro�le, fall between consecutive match positions and thus must be
scored by numbers accommodated between match positions.

The most basic parameters of a pro�le are the length and the sequence alphabet. The alphabet determines
the exact number of parameters per insert and match position. Together with the length, it also determines the
alignment space for which a similarity score is de�ned.

Let's de�ne an alignment formally using the coordinate-pair notation:

De�nition 1: An alignment between a pro�le of length m and a sequence of n letters a1; : : : ; an is given by an

ordered set of coordinate pairs:

f(x0; y0); (x1; y1); : : : ; (xl�1; yl�1); (xl; yl)g
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Scores for match position x

mx(a) Match score for amino acid a

dx Delete extension score

Scores for insert position x

ix(a) Insert score for amino acid a

b̂x External initiation score
~bx Internal initiation score
êx External termination score
~ex Internal termination score

tb!d;x tb!m;x tb!i;x tb!e;x

td!d;x td!m;x td!i;x td!e;x

tm!d;x tm!m;x tm!i;x tm!e;x

ti!d;x ti!m;x ti!i;x ti!e;x

Transition scores

Table 1: The generalized pro�le has many score parameters, summarized here. Match position x is
between insert positions x� 1 and x, as shown in Figure 4. Which transition cost is used in each insert
position is determined by the alignment path, as explained in the text. If the position subscript x is
omitted in specifying a parameter, then the parameter is assumed to be identical for all positions.

Each x coordinate represents an insert position in the pro�le (0 � xk � m) and each y coordinate represents a

position between consecutive residues in the sequence (0 � yk � n). Furthermore, adjacent coordinate pairs must

have one of the following relationships:

match xk+1 = xk + 1 and yk+1 = yk + 1

insert xk+1 = xk and yk+1 = yk + 1

delete xk+1 = xk + 1 and yk+1 = yk.

An extension step corresponds to an alignment path segment joining two consecutive coordinates. Three
types of extension steps are distinguished: match steps associate one pro�le match position with one residue of
the sequence and correspond to diagonal segments of the path; insert steps associate one pro�le insert position
with one residue of the sequence and correspond to horizontal segments of the alignment path; deletion steps

represent pro�le match positions not associated with a sequence residue and correspond to vertical segments of
the alignment path. There is one insert extension score and one match extension score per residue at each insert
and match position, respectively. In addition, there is a residue-independent deletion extension score at each
match position.

A state transition occurs between any two consecutive extension steps, as well as at the beginning and at the

end of the alignment. The possible states of an alignment are begin, match, insert, deletion, and end , symbolized
by letters b, m, i, d, and e, respectively.

There are 16 di�erent types of state transition scores for all combinations of fb;m; i; dg � fm; i; d; eg. For
reasons of completeness, we included a b ! e transition score de�ning a position-speci�c score for empty
alignments. The b ! d, and d ! e scores are only useful in conjunction with a global alignment mode as
de�ned in Table 2.

The scores applying to the beginning and to the end of the alignment are called initiation and termination

scores. Each insert position contains two types of initiation scores, an internal and an external one. The �rst one
applies to alignments starting at the beginning of the sequence, the second to alignments starting at a sequence
internal position. The site-speci�city of the external and internal termination score is analogous. The primary
function of the initiation and termination scores is to encode di�erent alignment modes (see Table 2).

The complete list of parameters contained in a generalized pro�le is given in Table 1. The exact function of
each parameter is de�ned by the mathematical de�nition of the alignment score given in Section 3.3.

There is some redundancy in the parameters allowing for alternative representations of mathematically
equivalent pro�les. For example, the initiation scores and the state transition from b are distinct, but any
change made to one of the scores ~bx, b̂x, tb!d;x, tb!m;x, tb!i;x, or tb!e;x can be compensated by changes in
the other scores to get exactly the same total score for every alignment. This redundancy will be exploited in

Draft Copy|January 24, 1996|Do not circulate.



3. The structure of a generalized pro�le 8

alignment starts alignment ends constrained scores

pro�le seq. pro�le seq. mode name k = 0 1 � k � m� 1 k = m

b̂0 ~b0 b̂k ~bk ~ek êk ~e0 ê0

any any any any local

left left any any left-anchored local �1 �1 �1

see caption semiglobal �1 �1

left any right any domain-global �1 �1 �1 �1

left any right right right-anchored global �1 �1 �1 �1 �1

left left right right global �1 �1 �1 �1 �1 �1

Table 2: Constraints on initiation and termination score settings to get various alignment modes. Local
mode is the native mode for generalized pro�les, with no parameters forced to �1. By setting certain
initiation or termination scores to �1, various types of alignments can be prohibited. The �rst through
fourth columns give the legal starting and ending positions for an alignment (starting either at the left
end or anywhere in the pro�le or sequence and ending either at the right end or anywhere in the pro�le
or sequence). Note that b̂0 and êm are not constrained in any of the alignment modes. This table
summarizes and names some of the more useful settings. A particularly useful setting is the semi-global
alignment, which allows the alignment to start either at the left end of the sequence or the left end
of the pro�le, and stop either at the right end of the pro�le or the right end of the sequence. This
allows �nding complete motifs within longer sequences and fragmentary motifs that are cut o� at the
beginning or end of a sequence, without getting a lot of less interesting partial matches buried in the
middle of sequences.

Section 4.4 to convert generalized pro�les to equivalent ones that are more easily converted to hidden Markov
models.

3.3 De�nition of scores for generalized pro�le-sequence alignments

We can compute the score for an alignment between a generalized pro�le and a sequence by adding up several
parts: an initiation score, an extension score for each adjacent pair of coordinates, a state-transition score for
each coordinate pair, and a termination score.

The initiation score is either the external or the internal initiation score (depending on whether or not we
start at the beginning of the sequence) for the �rst position in the pro�le that is actually used:

begin =

�
b̂x0 if y0 = 0
~bx0 otherwise

: (1)

The extension score depends on the type of extension (match, insert, or delete), and the amino acid involved
in matches or insertion:

ext(k) =

8<
:

mxk (ayk) if xk�1 = xk � 1 and yk�1 = yk � 1
ixk(ayk ) if xk�1 = xk and yk�1 = yk � 1
dxk if xk�1 = xk � 1 and yk�1 = yk

: (2)

The state-transition scores are determined by the type of extension on either side of the position:

trans(k) = tvk!vk+1;xk for 0 � k � l (3)

where

vk =

8>>>><
>>>>:

b if k = 0
m if xk�1 = xk � 1 and yk�1 = yk � 1
i if xk�1 = xk and yk�1 = yk � 1
d if xk�1 = xk � 1 and yk�1 = yk
e if k = l + 1

: (4)
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3. The structure of a generalized pro�le 9

Finally, we include either the external or the internal termination score for the last position of the pro�le
that is actually used:

end =

�
êxl if yl = n

~exl otherwise
: (5)

The alignment score itself is de�ned as the sum of the above-de�ned components:

S(A) = begin +

lX
k=1

ext(k) +

lX
k=0

trans(k) + end :

With this de�nition of the alignment score, calculation of the optimal alignment score is a straight-forward
dynamic programming algorithm, almost identical to the algorithms used for sequence alignment or hmm

alignment. Refer to Appendix A for a more detailed presentation of this dynamic programming.
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4 Generalized pro�les are equivalent to a class of hidden Markov models

This section shows the equivalence between generalized pro�les and a class of hidden Markov models.
Section 4.1 explains what a hidden Markov model is, and what subset of them we are interested in, Section 4.2
looks at the relationship between probabilities of paths in a hidden Markov model and scores in a generalized
pro�le, and Sections 4.3 and 4.4 establish the equivalence.

4.1 What is a hidden Markov model?

Hidden Markov models (hmms) are one way of encoding information about a set of �nite-length sequences
over some alphabet|in our case, sequences of amino acids. They model the sequences as being generated
by a stationary stochastic process|that is, they assign a probability to every possible sequence. For a good
introduction to hmm techniques, see [Rabiner, 1989].

A hidden Markov model is a directed graph consisting of vertices (called states) and edges (sometimes called
transitions, though we will use that term for a particular group of edges in an hmm). The hmms we are interested
in have two types of states: letter states, each of which has an associated probability distribution of letters from
the same alphabet, and null states, which have no associated letters. In the diagrams for this paper, letter states
are shown as square boxes and null states as circles. Also, each edge has an associated probability, with the
probabilities of the edges out of any state summing to one.

An hmm has two distinguished states: the start state and the stop state, both of which are null states. The
start state has no in-edges and the stop state has no out-edges.

We compute the probability of a sequence w by looking at all paths from the start state to the stop state and
computing the probability of each path and the probability of the sequence given that path. The probability
of a path in an hmm is just the product of the probabilities of the edges along the path. The probability of a
sequence given a path is the product of the probabilities of the letters in the corresponding letter states (or zero,
if the number of letter states on the path is not the same as the length of the sequence). If we call the ith letter
of the sequence wi and the ith letter state on the path li, then

Pmodel(w; path p) =

0
@ Y
edges e2p

P (e)

1
A
 Y

i

P (wijli)

!

and
Pmodel(w) =

X
paths p

Pmodel(w; p) ;

where the sum is to be interpreted as including only those paths from the start node to the stop node that have
the right number of letter states.

With this de�nition of the probability of a sequence given an hmm, there is no hope for �nding an equivalence
with generalized pro�les, since the pro�les pick only the highest scoring path, not all possible paths. However, if
we rede�ne our model so that the \probability" of a sequence is the maximum over all paths of the right length
from start to stop, rather than the sum over such paths:

Pmodel(w) = max
paths p

Pmodel(w; p) ;

then we can �nd an equivalence.

The use of the maximum probability path (often called the Viterbi path) is quite common with hmms, as
it is cheaper to compute and provides alignment information that is not easily obtainable with the sum-of-
probabilities de�nition. The probability assigned to a sequence by the Viterbi path in an hmm is a lower bound
on the true probability (sum over all paths) assigned by the hmm.

We are interested only in a small subclass of hmms here|those that are equivalent to generalized pro�les.
We'll show this class of hmms by diagram, but �rst let's introduce some notation to simplify the diagrams. First,
a node is a pair of states: a letter state called the match state and a null state called the delete state. The node
will be drawn as a vertical ellipse, as shown in Figure 5. Second, a transition is a collection of three states (begin,
insert, and end) and sixteen edges connecting two nodes, as shown in Figure 6.
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D

M

Figure 5: A node contains one match state (M) and one delete state (D).

I

X Y

M

D

X

B

E

M

D

Y

Figure 6: The top symbol (a heavy arrow connecting two nodes) stands for the transition shown below.
Note that the insert state and the begin and end null states and the sixteen edges that connect them
to the adjacent nodes are all part of the transition. In the text, we will refer to a particular transition,
such as this one from X to Y , with an arrow X ! Y , and the three states in the transition as BX!Y ,

IX!Y , and EX!Y .

4.2 The null model

Before we can construct the hidden Markov Model equivalent to a generalized pro�le, we need to examine a
little more closely what the score from the pro�le means.

As Altschul pointed out [Altschul, 1991], any alignment score for a sequence w can be interpreted as making
an assertion about the ratio of two probabilities. If we think of our sequences as being generated by some
stochastic process or model m, the score s is the logarithm of the ratio of the probability of the sequence being
generated by the model Pm(w) and the probability of the sequence being generated by a null model P;(w) (with
some arbitrary logarithmic base z):

score(w) = logz
Pm(w)

P;(w)
:

Note that high scores can result from sequences that aren't modeled well by the null model, as well as from
sequences that are well modeled by model m.

There is a simple signi�cance test that can be applied to hidden Markov models (or any other modeling
scheme that assigns probabilities to all sequences). Milosavlevi�c's algorithmic signi�cance test asserts that the
probability of getting a score larger than T for sequences distributed according to the null model is less than
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NB NE

NI

ND

p01

1-p 0

Figure 7: This is the implicit null model for a generalized pro�le. It generates sequences from a
background distribution speci�ed by the insert state NI with a geometric length distribution speci�ed
by the probability p0.

z�T [Milosavljevi�c and Jurka, 1993]. Of course, this test relies on using a reasonable null model, which is not
always available.

Before we can construct an equivalent hidden Markov Model for a generalized pro�le, we need to know what
null model was used for the generalized pro�le. If the null model is provided with the pro�le, we can use it,
otherwise we can choose a standard null model. The model in Figure 7 is a reasonable null model for most
pro�les. The insert state NI can be set up to match the background distribution, and looping with probability
p0 gives a geometric length distribution for the sequences. This null model (or a similar one) is implicit in many
of the scoring systems used for alignment.

We can construct an hmm equivalent to a generalized pro�le for almost any null model of the form proposed
in Figure 7, as long as NI does not assign a zero probability to any letter, and p0 is not too close to one. The
exact constraint on p0 will be shown when we get to the constraining step in the construction.

A future extension of the generalized pro�le syntax used in prosite will provide a way to specify null models
and the logarithmic base to be used for converting probabilities to scores.

4.3 Converting an hmm to a generalized pro�le

The hmms we are interested in are those that have the structure shown in Figure 8. The structure of the
hmms corresponds in an obvious way to that of a generalized pro�le|each node corresponds to a match position
of the generalized pro�le, each transition to an insert position, the edges from B to the external initiation scores,
the edges from B0 to the internal initiation scores, the edges to E to the external termination scores, and the
edges to E0 to the internal termination scores. The hmm is a linear hmm, except for the copies of the null models

added at the beginning and end to handle the internal initiation and termination scores.

In one direction, the equivalence between hmms and generalized pro�les is easy|we can take a linear hmm
m of the appropriate form and convert it to a generalized pro�le G, such that for any sequence w the score
generated by the G is the log probability ratio:

scoreG(w) = logz
Pm(w)

P;(w)
:

The parameters of the generalized pro�le are given in Table 1|all we have to do is to show how to set these
parameters.

First, we set the match extension scores for position x to the probabilities given by the match state in node
x:

mx(a) = logz
P (ajMx)

PNI
(a)p0

;

where PNI
(a) is the background distribution given by the null insert state NI . We set the insert scores similarly

from the insert states:

ix(a) = logz
P (ajIx!x+1)

PNI
(a)p0

;
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Figure 8: A linear hmm that is equivalent to a generalized pro�le. The nodes on the left and right ends
are dummies (the states in them are never part of a path from the start state B to the stop state E).
They are present only to create the adjacent transitions (especially the insert states). Note the copies
of the null model to join the true start state B to the internal start B0 and the internal stop E0 to the
true stop state E.

and we set all delete-extension scores to zero. (Remember that the notation Ix!x+1 means the insert state in
the transition from node x to node x + 1 of the hmm.) Note that we have incorporated p0 into the match and
insert scores, rather than into some transition score. We do this for convenience in keeping track of the number
of times p0 gets included, since the edge in the null model is traversed once for each letter in the sequence.

The transition scores are set to the log of the probability of the corresponding edges in the hmm.

The external initiation scores are set to the log of the probabilities of the edges from B:

b̂x = logz P (B ! Bx!x+1) ;

and the external termination scores are set similarly

êx = logz
P (Ex!x+1 ! E)

1� p0
:

The extra 1 � p0 term in the external termination score is to correct for the �nal edge of the null model from
ND to NE .

The only slightly tricky part is handling the internal initiation and termination scores. Since the generalized
pro�le does not have any structure corresponding to the part of the hmm between B and B0, we have to make
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4. Generalized pro�les are equivalent to a class of hidden Markov models 14

sure that all sequences generated by paths from B to B0 would have the same score (log probability ratio in the
hmm and the null model), and add that score to the log probability of the edge from B0 to get the pro�le score.

If we set the internal initiation scores to

~bx = logz (P (B
0 ! Bx!x+1)q(1� p0)) ;

and the internal termination scores to

~ex = logz (P (Ex!x+1 ! E0))

then the scores for all paths will have the proper correspondence to the probabilities in the hmm.

There is one minor di�erence between the generalized pro�les and the hmms: generalized pro�les do not allow
the internal initiation scores to be used at the beginning of the sequence, nor the internal termination scores to
be used at the end of the sequence, but the hmms do have paths from B through B0 (and through E0 to E)
that match zero-length strings, allowing the use of internal initiation (and termination) scores at the ends of the
sequence.

The hmm-to-generalized-pro�le conversion works as long as

P (B0 ! Bx!x+1)q(1� p0) < P (B ! Bx!x+1)

and
P (Ex!x+1 ! E0)(1� p0) < P (Ex!x+1 ! E) ;

since then the paths B ! DB ! B0 ! x and x ! E0 ! DE ! E will always have lower probability than the
direct paths B ! x and x! E and so never appear on the Viterbi path. These constraints on the probabilities
are equivalent to the following constraints on the scores in generalized pro�les: ~bx < b̂x and ~ex < êx.

Those constraints, which are met by all existing generalized pro�les, insure that the internal scores would
never be used at the ends of the sequences even without the prohibition in the de�nition, and so the prohibition
can be removed from the de�nition without changing the meaning of the existing pro�les. If the constraints are
not met, the generalized pro�le can have some rather non-intuitive behavior, preferring incomplete matches to
complete ones, to avoid the low external scores.

Note that pro�les constructed from linear hmms, such as those constructed by SAM [Hughey and Krogh,
1995], will have �1 for all initiation scores except in position 0 and for all termination scores except in position
m, because the corresponding edges do not exist (equivalently, have probability zero) in SAM's hmms. The
free-insertion modules of SAM correspond roughly to the beginning and ending null models of our hmms, and so
all four of the parameters ~b0, b̂0, ~em, and êm can be used. From Table 2, we can see that the pro�les constructed
from SAM hmms use domain-global alignment mode (or global mode, if free-insertion modules are not used).

4.4 Generalized pro�le to hmm

If a generalized pro�le has been created by conversion from an hmm, we can easily reverse the construction to
re-create the hmm. We �rst look up or select a null model, then construct the graph for the hmm as in Figure 8,
and �nally assign probabilities in the obvious way, reversing the equations of Section 4.3.

We can do the conversion no matter what non-zero background probabilities we assume for the null model,
but there are some constraints on the loop probability p0, imposed by the insert scores in the generalized pro�le.

We would like to do this construction of an hmm for any generalized pro�le, but if we just apply the formulas
blindly we can end up with \probabilities" on the edges of the hmm that don't add up to one at some states. If
all the sets of \probabilities" computed by reversing the formulas of Section 4.3 add up properly to one, then we
say that the generalized pro�le is in normal form.

We can also end up with probabilities of zero for various edges or for character probabilities in match or
insert states, where the pro�le has scores of �1. In order to ensure that all parts of the Markov model are
reachable, one generally requires non-zero probabilities on all edges. The simplest solution is to replace the �1
scores with a large negative number, so that no probability is zero, but the prohibited edges or matches have
such a low probability that they will never appear on any Viterbi path.
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4. Generalized pro�les are equivalent to a class of hidden Markov models 15

Since the insert and delete costs in pro�les are often rather arbitrarily scaled, we may want to choose di�erent
bases for the logarithms in the transition scores than for the logarithms in the match and insert scores. Such a
translation would not preserve the scores of paths, but might be useful for translating pro�les whose gap costs
have not been properly chosen.

If the generalized pro�le G is not in normal form, we have to �nd an equivalent generalized pro�le G0 that is.
The equivalence cannot preserve scores exactly|the best we can do is to guarantee that there is some constant
c such that

scoreG(w) = c+ scoreG0(w) :

The important observation to make is that the scores we are interested in are scores of paths through the
generalized pro�les|we can change the parameters of the pro�le arbitrarily, as long as the scores of all paths
remain the same.

There are some obvious ways that we can modify scores|for example, we can subtract a constant from all
match scores in position x and add that constant to all the transition scores t�!m;x�1 or to all the transition
scores tm!�;x.

2 Since every alignment that does a match at position x must pass through a transition into M
at x and a transition out of M at x, these changes in the parameters make no di�erence to any path score. The
same operation can be done for insert scores and delete extension scores.

We can also apply this operation twice to transfer a constant from all transitions tm!�;x to t�!m;x�1. For
insertions the transition score ti!i;x is unchanged by the corresponding transfer, since the score is associated
with both an in-edge and an out-edge of the insert state.

We can use this operation of pushing constants backwards through the pro�le to convert the generalized
pro�le into normal form.

First, we want to normalize the match scores so that the corresponding letter states in the hmm will
have probabilities that sum to one. Since PMx

(a) = zmx(a)PNI
(a)p0, we can accomplish this by subtracting

logz
�
p0
P

b z
mx(b)PNI

(b)
�
from the match scores in position x, and adding it each of the transition scores

t�!m;x�1. The insert scores are similarly normalized, and the delete scores are eliminated by adding them
to the t�!d scores.

Next, starting at the end of the model, we normalize all transition scores so that the probabilities of the
out-edges of each state in the hmm sum to one, moving the normalizing constant from the out-edges to the
in-edges.

There is only one tricky part to this normalization: handling the insert loops correctly. Since moving a
constant through an insert loop doesn't change the score of the loop edge itself, we have the constraint that
the transition score ti!i;x after the insert letter scores have been normalized must already be the log of some
probability p. We normalize the remaining transition scores ti!m;x, ti!d;x, and ti!e;x so that the corresponding
probabilities sum to 1� p.

In order for the loop edge to have an acceptable probability after normalizing the letter scores, we have the
constraint (in the scores of the original pro�le)

ti!i;x + logz

 
p0
X
b

zix(b)PNI
(b)

!
< 0 :

Since the null model is not provided in the generalized pro�le, and we are forced to guess one, these constraints
on the insert loops can be viewed as upper bounds on our guess for p0:

p0 <

P
b z

ix(b)PNI
(b)

zti!i;x

:

Note: the constant q in the hmm for the probability of doing any internal initiation is set automatically by
sweeping the constants back and normalizing the probabilities of the edges out of B. The cycles for the copies
of the null model (IB ; DB and IE ; DE) are unchanged by pushing constants back through them, just as the
self-loops on the insert states were unchanged.

2The symbol * is used to indicate any of the legal extension types.
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We are left at the end of the normalizing process with unnormalized transition probabilities out of B, and no
place to push the normalizing constant back to. This is the constant c mentioned as being unavoidable in the
conversion process.

The conversion process just described relies heavily on the hmm being a left-right hmm, with no cycles in the
graph except the loops on the insert states and the DB and DE cycles. If we allow circular pro�les (merging
nodes 0 and m + 1 of Figure 8), then we have to impose other constraints on the scores to ensure that an
alignment path even exists.
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5. The motif search problem 17

5 The motif search problem

So far we have spoken only about alignments and scores, and have not talked about the real problem we are
trying to solve: �nding biologically meaningful instances of motifs. In a typical application, one is interested in
the following questions:

1. What sequences contain the motif?

2. How many times does the motif occur in the sequence?

3. Where are the motif instances located?

4. How similar are these motif instances to the motif?

5. How can the motif instances be aligned to the motif?
It is important to recognize that these questions cannot be fully answered by formulating the motif search

problem as a classi�cation problem, which answers only the �rst question. In fact, a major shortcoming of
published database search algorithms using pro�les or hidden Markov models is that they are designed to �nd
only the single best alignment between the model and a sequence, or to compute only a single value to assess
membership of a sequence family. The advantage of the motif search method de�ned here is that it provides a
complete answer to the above questions.

There are two reasons why the search for a biomolecular sequence motif is not a trivial task, even if the
motif is accurately de�ned by an appropriate descriptor. The �rst one is that genetic texts, in the form of
nucleotide sequences or translated into protein, do not contain any obvious punctuation signals. As a consequence,
delineation of functional subsequences and classi�cation of these subsequences must proceed simultaneously.
The second reason is that biological sequence motifs, of the same or of di�erent types, may occur in partially
overlapping fashion. The high degeneracy of many motifs favors such an arrangement. However, the physical
overlap constraints vary greatly between di�erent motifs. For instance, the same protein sequence cannot
simultaneously participate in the formation of two autonomous structural domains. By contrast, a short DNA
sequence can simultaneously be part of two protein recognition sites, located on opposite sides of the double
helix. Therefore, a generally applicable motif search technique must deal with the overlap problem in a 
exible
way.

5.1 Motif search problem for generalized pro�les

Given the function of generalized pro�les, namely to assign a score to an alignment, it follows that the result
of an elementary motif search operation involving one pro�le and one sequence must have the form of a set of
alignments with corresponding similarity scores. As a �rst approximation, the goal can be described as �nding
all alignments with scores higher than a prescribed cut-o� value. However, in the literal sense, this is not the
desired result because each alignment exceeding the cut-o� value is usually surrounded by a large number of
similar alignments also exceeding the cut-o� value. Usually one wants such a group of alignments be represented
by a single, locally optimal alignment. This can be achieved by requiring that two alignments contained in the
result of a motif search operation meet a speci�c disjointness criterion.

The motif search problem can be more precisely stated with the following de�nition:

De�nition 2: The motif search problem is to �nd a set EA of p alignments A1; : : : ; Ap given a sequence, a

pro�le, a symmetric disjointness relationship } between two alignments, and a cut-o� value c, respecting the

following conditions:

1. The score of each alignment of the set is greater or equal to the cut-o� value: 8i with 1 � i � p, S(Ai) � c.

2. The alignment A1 is a maximally scoring alignment, that is, 8 alignments B, S(A1) � S(B).

3. Any two alignments in the set are disjoint: 8i; j with 1 � i < j � p, Ai}Aj.

4. No alignment of the set can be replaced by a better one without violating the disjointness condition: 8i with
1 � i � p, 8B ( if 8j 6= i B}Aj, then S(B) � S(Ai) ).

5. No alignment whose score is greater or equal to the cut-o� value can be added to the set without violating

the disjointness condition: EA is maximal in the sense of inclusion.
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Figure 9: Geometric meaning of the disjointness de�nition used in prosite. The shaded area of the
pro�le corresponds to the protected region. The sequence ranges mapped by three di�erent alignments
to the protected region are indicated by ellipses below the sequence. Alignments A and B are disjoint
because these ranges do not overlap. By the same argument, alignments B and C are not disjoint and
thus cannot appear together in the result of a motif search.

In the generalized pro�le syntax, the cut-o� value and disjointness de�nition are implemented as external
accessories. This is because these parameters are only loosely associated with the motif de�ned by the pro�le. In a
real application, the choice of these parameters often depends on the speci�c purpose of a motif search application,
rather than on biological properties of the motif. For instance, with a pro�le that does not absolutely reliably
identify a motif, one may want to maximize either sensitivity or selectivity depending on the goal of the analysis.
The intended e�ect can be achieved by an appropriate choice of the cut-o� value. In certain situations, it may
be desirable to see multiple suboptimal alignments of the same sequence region with the motif, even if these
alignments are mutually exclusive. The number of such alignments appearing in the result can be controlled by
varying the disjointness de�nition.

5.2 Disjointness de�nition used in prosite

The de�nition of the motif search problem relies on an unspeci�ed disjointness relationship between align-
ments. The standard disjointness test used in prosite represents an adaptation of the problem of �nding multiple
non-intersecting best local alignments between two sequences formulated by [Waterman and Eggert, 1987].

The basic idea of disjointness is that the pro�le matches two separate parts of the sequence independently.
The particular disjointness de�nition used in prosite declares a range of match positions, including intervening
insert positions, as a protected region of the pro�le. For two alignments to be disjoint, the parts of the sequence
that are aligned to positions in the protected region must not overlap. The geometric meaning of this condition
is illustrated by the path matrix shown in Figure 9. Unlike the disjointness de�nition applied by the method
for �nding multiple best alignments between sequence pairs, this de�nition includes two adjustable parameters
(the ends of the protected region) conferring remarkable 
exibility to the motif search method (for a discussion
of biological examples, see [Bucher and Bairoch, 1994]).
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The following de�nitions make this concept more precise:

De�nition 3: The protected region [m1 : m2] of a pro�le consists of match positions m1; : : : ;m2 and insert
positions m1; : : : ;m2 � 1.

De�nition 4: The sequence range [n1 : n2], mapped by alignment A to the protected region of the pro�le
[m1 : m2] consists of all residues mapped by A to a match or insert position of the protected region of the pro�le.

De�nition 5: Two alternative alignments A and A0 between a sequence and a pro�le are disjoint if and only
if the sequence ranges [n1 : n2], [n

0

1 : n
0

2], mapped by A, A0, respectively, to the protected region of the pro�le
[m1 : m2], do not have any residue in common.

If no protected region is speci�ed, it is assumed that the entire pro�le is protected, and alignments are disjoint
if they have no characters of the sequence in common. If an alignment results in no characters of the sequence
mapping to the protected region, then the alignment is disjoint from all other alignments. Such a situation
usually indicates a poorly designed pro�le, and it is reasonable for a computer program to reject such alignments
(with a warning, of course).

5.3 Choosing sets of alignments

The calculation of the optimal alignment is straightforward (see Appendix A for details), but the algorithm
for choosing sets of disjoint alignments to match De�nition 2 is not obvious. This section outlines the algorithm
used in prosite to generate reasonable sets.

The methods for �nding alignment sets for motif search are adapted from e�cient algorithms for �nding
multiple best local alignments between two sequences (for a review, see [Pearson and Miller, 1992]). The basic
algorithm for �nding multiple disjoint alignments is an iterative procedure that adds one alignment to the set
on each iteration. The generic form of the algorithm is to, on each iteration,

1. add the best alignment in the path matrix to the alignment set, and

2. remove from the path matrix all edges that are parts of non-disjoint alignments.
(See Appendix A for explanation of the path matrix and calculation of optimal alignments.)

This algorithm is applicable to variety of disjointness de�nitions including the standard de�nition used in
prosite and the no-common-pair de�nition introduced in [Waterman and Eggert, 1987].

Implementation of the basic methods is simple, requiring only two modi�cations to the algorithm used to
compute the optimal alignment score. First, the recursive equations de�ning the score at each path matrix node
have to account for the edges that have been removed from the path matrix. Second, some limited alignment
information needs to be kept to make the necessary modi�cations after acceptance of an alignment. If the
standard prosite disjointness de�nition is used, only the beginning and end points of the sequence region
associated with the protected region need to be recorded.

The generic algorithm is relatively slow, requiring recomputation of the entire path matrix for each accepted
alignment, but the sequence analysis literature provides many hints how to speed up this process. For example, for
the no-common-pair disjointness de�nition, [Huang and Miller, 1991] contains a e�cient algorithm not requiring
storage of the entire path matrix. A similar time- and space-e�cient solution for the prosite disjointness
de�nition has been developed, and will be described in a subsequent paper.

Even with the most e�cient methods, keeping track of alignment information slows down the computation
of the optimal alignment algorithm by at least a factor of two. Since most protein domains covered in prosite
occur in few sequences, it is advantageous to scan a protein database by �rst computing the optimal alignment
score in the most e�cient way (possibly using a co-processor), then applying the multiple motif search algorithm
only to those few sequences which exceed some cut-o� value.

There are two technical issues one has to be aware of when implementing this method:

1. There can be multiple best alignments having the same score at any stage of the iterative process. Thus,
the statement of the problem in De�nition 2 does not de�ne a unique solution. Algorithms for �nding
multiple alignments between sequences handle this problem by applying tie-breaking rules that provide a
ranking between equally scoring alignments. Any function that assigns a unique value to every possible
alignment path is adequate for this purpose. It must be realized, however, that application of di�erent
tie-breaking rules may a�ect the result of a motif search operation in unexpected ways. It may change not
only the geometry of the alignments, but also the corresponding similarity scores, or even the total number
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of alignments included in the result. Detailed descriptions of motif-search algorithms should explicitly state
the tie-breaking rules used|the paper that describes the e�cient algorithm used for prosite will contain
this information as well.

2. An alignment may have no sequence characters associated with the protected region. With De�nition 5,
such an alignment is disjoint from any alignment, including itself, and so the algorithm will loop in�nitely,
since no edge can be removed from the path matrix. a reasonable way to deal with this exception is to
restart the entire computation with an higher cut-o� value that excludes the faulty alignment or with a
larger protected region.

Draft Copy|January 24, 1996|Do not circulate.



6. Using generalized pro�les and hidden Markov models to identify globins 21

name length description

GLB ASCSU 338 two globin domains
GLB PSEDC 333 two globin domains

FHP CANNO 387 
avohemoprotein
FHP YEAST 399 
avohemoprotein
HMPA ALCEU 403 
avohemoprotein
HMPA ECOLI 396 
avohemoprotein
HMPA VIBPA 394 
avohemoprotein

HBB1 UROHA 146 fragments (contains 24 Xs)
HBA2 PLEWA 133 fragment
HBAZ MESAU 102 fragment
HBA1 UROHA 90 fragment (contains 4 Xs)
HBB DASVI 87 fragment
HBA2 UROHA 40 fragment
GLB2 GLYDI 45 fragment (contains 2 Xs)
GLB1 LAMSP 41 fragment
HBB2 UROHA 19 fragment
HBB OVIMU 145 (contains 12 Xs)

GLBH CAEEL 159 debatable globin (included)

GLB TETPY 121 debatable globin (rejected)
GLBN NOSCO 118 debatable globin (rejected)
GLB PARCA 116 debatable globin (rejected)

Table 3: Special sequences in Swiss-Prot release 31 for the globin-recognition problem. The 
avohe-
moproteins are much longer than normal for globins, but contain a globin domain at one end. The
nine annotated fragments vary considerably in length. There are only four proteins of debatable status,
a globin-like protein from C. elegans and a group of three heme-binding proteins from protozoa and
cyanobacteria. The former is classi�ed as a true globin in this study, the latter three are rejected for
the reasons given in [Takagi, 1993].

6 Using generalized pro�les and hidden Markov models to identify globins

In this section, we will show how the interconversion of generalized pro�les and hmms can lead to better
results than using either method alone, and how the understanding of the equivalence can be used to improve
existing search tools. To illustrate these points, we use generalized pro�les and hmms to separate globins from
non-globins in the Swiss-Prot database.

6.1 The globin-recognition problem

The globin-recognition problem has often been used as an example to demonstrate the e�ciency of methods
to detect weak sequence similarities. Obvious advantages of this system are the relative abundance of sequences
(676 complete globin sequences in Swiss-Prot release 31), and the availability of several high resolution 3-D
structures representing diverse subfamilies. Moreover, the problem provides the necessary degree of di�culty
as standard pairwise sequence comparison methods usually fail to detect signi�cant similarities between distant
members. Finally, the evaluation of di�erent methods is greatly facilitated by the high degree of certainty in the
classi�cation of globins.

The 676 sequences include a few unusual sequences, and exclude a few sequences that others may consider
globins. Table 3 lists the unusual sequences.

In previous studies of this kind (for example, [Gribskov et al., 1987, Krogh et al., 1994]), the globin-recognition
problem was treated as a sequence classi�cation problem. However, such an approach simpli�es the underlying
biological problem since globin folding units, like most other protein structural domains, occasionally occur
as multiple copies in the same polypeptide chain. As the new search techniques described in Section 5 allow
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automatic identi�cation of multiple motif instances in the same sequence, the performance of the newly derived
globin pro�les will be evaluated by the number of correctly identi�ed globin domains rather than globin sequences.

The parallel tests performed with the hmm search algorithm have to classify sequences, since the SAM
package [Hughey and Krogh, 1995] used does not have the ability to report multiple alignments.

The results obtained with the two search techniques are nevertheless comparable because the protein database
searched contains only two sequences with multiple globin domains.

6.2 Construction of hmms and generalized-pro�les

In order to separate the evaluation of di�erent model construction methods from the evaluation of di�erent
search techniques, we constructed some pro�les with methods designed for pro�les, and some hmms with methods
designed for hmms, then used our conversion techniques to convert each to the other. We used both generalized-
pro�le search methods and hmm search methods to evaluate each of the models.

We constructed two pro�les using existing pro�le-construction methods: Pro�le-3d and Pro�le-333. The
same construction technique was used for both, but Pro�le-3d started from a structural alignment of seven
globins [Bashford et al., 1987], while Pro�le-333 started from a multiple alignment of 333 randomly chosen globins
that was produced automatically using ClustalW [Thompson et al., 1994a]. The set of sequences included one of
the two-domain globins (GLB ASCSU), two of the 
avohemoproteins (FHP YEAST and HMPA VIBPA), and
�ve fragments.

The multiple alignments were directly converted to generalized pro�les using the current method used for
constructing prosite pro�les. This method involves gap excision [Thompson et al., 1994b] and a symmetric gap
weighting mode made possible by the new parameters of generalized pro�les. The sequences in the alignments
were weighted with the method of [Sibbald and Argos, 1990]. The match tables were created with a 10 log10-
scaled blosum-45 matrix [Heniko� and Heniko�, 1992], and position-speci�c gap weights were created using
parameters recommended in [L�uthy et al., 1994]. The initiation and termination scores were set to zero, except
for the ones that need to be �1 to get semiglobal alignment (see Table 2). The search for multiple domains set
the protected region of the pro�le to all but the �rst and last �ve positions of the pro�le.

The two pro�les were converted to equivalent hmms by the method of Section 4.4. The logarithmic base z
for the conversion was estimated by examining the average entropy of the match positions in a natively trained
hmm (hmm-333) and setting z so that the average entropy of match positions in the converted hmm was the
same as in the native one.

We tried various ways of deriving z using just statistics about the pro�le scores, but were unable to come
up with an appealing way to set z. For example, we tried scoring a large set of random sequences created by
window-shu�ing Swiss-Prot release 29 with a window size of 20 [Pearson, 1990]. The logarithmic base z was
chosen so that the probability of a score larger than t was approximately z�t for large values of t. This did not
work particularly well|indeed the value of z obtained this way was a factor of two too small.

If too large a value is chosen for z, the hmm search using all paths is essentially the same as one using Viterbi
paths only, since the optimal alignment will have a much higher probability than slightly poorer ones. If too
small a value is chosen for z, the hmm search will give much too high a probability to poor alignments, and not
classify sequences well. The ranks of individual alignment paths are not changed by the choice of z (in particular,
the Viterbi path remains the same), only the probabilities assigned to the alignments are changed.

The parameters for the null model assumed in the conversions are shown in Table 4. The probabilities of
the letters correspond to their frequencies in Swiss-Prot release 31, and the self-loop probability to an expected
sequence length of 333.

Two hmms were constructed using the SAM program buildmodel and a set of training sequences. For hmm-
333, buildmodel was started with a random model that it constructed, while for hmm-prof-3d buildmodel was
started with an hmm converted from Pro�le-3d.

One error was made in building the models|the insert positions were given 
at distributions (based on the
models that SAM creates by default) rather than background probability distributions. This caused the hmms
to perform poorly, as compositionally biased sequences could get much higher scores in the hmm than in the null
model, even without good alignments. For example, if the null model that the hmm was compared with used
the background frequencies, then the histidine-rich, non-globin HRPX PLALO is much too highly scored, since
histidine has a lower probability in the null model than the hmm. If the 
at distribution is used as a null model,
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parameter probability parameter probability parameter probability

P(A) 0.0760 P(C) 0.0176 P(D) 0.0529
P(E) 0.0628 P(F) 0.0401 P(G) 0.0695
P(H) 0.0224 P(I) 0.0561 P(K) 0.0584
P(L) 0.0922 P(M) 0.0236 P(N) 0.0448
P(P) 0.0500 P(Q) 0.0403 P(R) 0.0523
P(S) 0.0715 P(T) 0.0581 P(V) 0.0652
P(W) 0.0128 P(Y) 0.0321 p0 0.9970

Table 4: Parameters of the null model (see Figure 7) used for conversion of pro�les to hmms and for
normalizing scores of hmms.

then the alanine-rich, non-globin TOLA ECOLI is scored too high, since the alanines score better in the match
positions of the pro�le than in the null model, even in poor alignments.

The training sequences were the 333 randomly chosen sequences used for creating Pro�le-333. Since SAM
does not yet support sequence weighting, the training set was given a crude weighting by hand: those sequences
in the training set that scored poorly with an early version of the model were duplicated, and those that scored
extremely poorly were replicated four times. This training set was frozen early in the process of developing the
models, and the replicated sequences may not in fact be the low-scoring ones in the �nal model.

The models were trained using the free-insertion modules provided by SAM, but scoring using Krogh's ad
hoc length normalization scheme resulted in very poor performance for the hmms. This surprised us, since the
models worked well with pro�le search.

We managed to get good performance on the hmms by removing the free insertion modules and patching the
models to use the natural scoring system:

score(w) = logz
Pm(w)

P;(w)
:

This patch consisted of removing the free insertion modules, changing all insertion letter tables to the background
frequencies (simultaneously putting the null model in the �rst and last insert position and �xing the incorrect
probability distribution for the other insert states), and changing the self-loop probabilities of the �rst and last
insert states to 0.997.

Some special adjustment was made to initial and �nal transitions, to give the hmms a fair chance of �nding
fragments. The transition from the start state to the �rst delete state was given a probability of 0.04, from the
start state to the �rst insert 0:96�0:997 and from the start state to the �rst match state 0:04�0:997. Transistions
from the �nal match state to the end state were given probability 0:008 and from the �nal delete state to the
end state 0:04. The 0:04 probabilites for the transitions to and from delete were chosen to approximately match
the frequency of fragments in the training set. Note that all this ad hoc patching could easily be incorporated
into the standard conversion method.

The patch was applied to the hmms converted from generalized pro�les as well, and it is the patched hmms
whose performance is reported in Section 6.3.

It would be useful if SAM supported training to maximize the score di�erence between the model and the
null model, rather than maximizing the score in isolation. The concept of \free-insertion modules" could be
replaced with \null-model insertion modules", so that these copies of the null models are kept identical to the
null model throughout training.

6.3 Evaluation of hmms and generalized-pro�les

The classi�cation results from using hmm search techniques and generalized-pro�le search techniques on the
same model (summarized in Table 5) are comparable. For both search methods the scores were normalized

� log10
Pm(w)
P;(w)

. The generalized-pro�le scores were normalized by �tting an extreme-value distribution to the

high scores obtained from scoring a window-shu�ed version of Swiss-Prot release 29 [Pearson, 1990]. The hmm
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Search using generalized pro�le
Pro�le-3d Pro�le-333 hmm-333 hmm-prof-3d

lowest globin score 7.11 5.34 8.25 9.44
highest non-globin score 6.89 7.78 7.78 7.65
gap 0.22 -2.54 0.47 1.79
mean of 5 highest non-globin scores 6.57 7.11 7.15 6.98
number of globin sequences(domains) missed 0 3(4) 0 0
number of fragments missed 2 2 2 2

Search using hmm
Pro�le-3d Pro�le-333 hmm-333 hmm-prof-3d

lowest globin score 2.49 6.08 9.26 10.75
highest non-globin score 6.39 8.73 6.58 7.35
gap -3.90 -2.65 2.68 3.40
mean of 5 highest non-globin scores 6.32 7.69 6.39 6.68
number of globin sequences missed 8 6 0 0
number of fragments missed 5 4 4 4
number of false positives 13 12 12 11

old prosite pro�le
number of globin domains missed 0
number of fragments missed 1

Table 5: Results of various attempts to model globins using hmms and generalized pro�les. The scores
reported are all normalized to be � log10 probability, and for the size database searched, scores larger
than about 7 should be signi�cant. The \gap" reported is the di�erence in score between the lowest
complete globin domain and the highest non-globin. Because the hmm program SAM has di�culty with
X characters, high scoring non-globins with many Xs were classi�ed as false positives, and the highest
scoring non-globin was chosen from among the sequences with fewer than 30 Xs. The performance of
the old hand-constructed prosite motif description is included for comparison.

results were normalized by subtracting o� the scores of the null model, and changing the base of the logarithm
from e to 10.

The following di�erences are noticeable;

� SAM is not able to handle wild-card characters correctly, assigning them a probability of one instead of
the more natural choice 2�entropy of table. As a result, sequences with many wildcards get much too high a
score. There are 23 sequences in the data base with 30 or more X characters, and about half of them cause
problems with the hmm classi�cation. These sequences have not been counted in choosing the highest
scoring non-globin, but are listed in the table as false positives.

� SAM does a poorer job in �nding fragments than searches using generalized pro�les. This di�erence
comes from a di�erence in alignment modes. The SAM package [Hughey and Krogh, 1995] used for linear
hmm search supports only the family and domain models introduced by Krogh [Krogh et al., 1994], which
represent special cases of the more general model proposed in Section 4 of this article. The models available
with SAM can only do global and domain-global searches, which makes �nding the fragments di�cult, while
the pro�les were all set to semiglobal alignment mode (see Table 2).

� The hmm scoring system generally creates a larger gap between the worst-scoring globin and the best-
scoring non-globin with native hmms, indicating a clearer separation of the classes.

Given the similarity in search results, is there any point to having both hmm and generalized-pro�le software?
De�nitely|our best model hmm-prof-3d was generated by a hybrid method: First we created a generalized pro�le
from a structural alignment, then converted to an hmm, did hmm training on a larger set of unaligned sequences,
and �nally converted back to a generalized pro�le for searching with semiglobal alignment.

Our conversion methods lead to new insights into how to normalize hmm scores appropriately, and suggested
several minor improvements to the SAM hmm tool.

Draft Copy|January 24, 1996|Do not circulate.



7. Conclusions 25

7 Conclusions

We have presented a uni�ed formalism to describe biomolecular sequence motifs and motif search algorithms.
Underlying this formalism is a speci�c motif concept with biological and mathematical connotations. Central to
the concept is that a motif instance is a speci�c alignment of a sequence region with a motif descriptor, not just
the sequence region alone. This motif concept can be applied to groups of protein or nucleic acid sequences that
share some common sequence features, because of either a common function or a common evolutionary origin.

In presenting this formalism, we made a clear distinction between three di�erent problems related to sequence
motifs.

� Deriving a sequence motif from initial data. We have not addressed this problem in detail here, relying
instead on existing techniques for pro�les and hmms.

� Describing the shared sequence properties constituting a sequence motif. The generalized pro�les represent
a generalization of many of the previously used motif descriptors, including a certain class of hmms. The
relationship between these descriptors has been analyzed in detail and conversion procedures for hmms and
generalized pro�les have been given.

� Locating and identifying instances of an already de�ned motif in functionally uncharacterized sequences.
We de�ned several di�erent alignment modes. One of them, semiglobal alignment, is perhaps more useful
than traditional modes such as local or global alignment.

We emphasized the distinction between the classi�cation and the motif search problem. Methods addressing
the �rst one are primarily useful for evaluating the validity of motif models on sequence regions of known
function, but not in situation where the total number, as well as the the start and end points of individual
motif instance are not known in advance.

The motif search problem stated here relies on four essential concepts. The �rst is the motif descriptor itself,
alternatively called a model. The second is the de�nition of the alignment, which in conjunction with a motif
description and a target sequence, de�nes the search space. The third is the scoring function for alignments.
The fourth is a disjointness de�nition, which together with the alignment scoring function, serves to de�ne a
non-redundant set of potentially interesting motif instances. We kept the �rst three components �xed and left
the speci�c de�nition of the disjointness open. The basic outline of this formulation can provide a framework
for de�ning motif search methods based on more complex descriptors such as general hmms and scfgs, if the
de�nitions of the alignment and disjointness relation are appropriately modi�ed.

The bene�ts from having a common formalism are manifold: Being able to convert motif descriptions derived
by many di�erent techniques obviously eases the design of versatile motif databases and search software. A
formal framework allows concise description of the behavior of motif search software independently of the speci�c
algorithm used.

Besides this, the study of the relationship between di�erent methods can lead to better understanding of
the underlying theories and improvement of the existing tools. We have exempli�ed this aspect by comparing
linear hidden Markov models with generalized pro�les, at a theoretical level as well as by a case study. This
comparison has been productive in many ways|the two most important achievements being the design of a
more e�ective search technique for hmms, and the formulation of local alignment in the theoretical framework
of hidden Markov models.
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